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ABSTRACT

Three turbulent shear stress models for use in prediction schemes

for three-dimensional turbulent boundary layers were studied. These

three models were evaluated primarily by comparison of numerical cal-

culations to experimental data.

A significant fraction of the existing three-dimensional turbulent

boundary layer data was examined, reorganized, partially recomputed and

tabulated in a consistent format.

A numerical procedure, suitable for all three shear stress closure

models was prepared. This procedure is an explicit forward difference

method that permits solution of the partial differential equations of

the boundary layer.

All three turbulent shear stress closure models are extensions of

current two-dimensional models:

i. The eddy viscosity model is based on the assumption that the

shear stress profile is a prescribed function of the mean

velocity profile. A two-dimensional prescription (Mellor 1967)

is assumed for shear stress magnitude. The shear stress

direction is computed by assuming that the eddy viscosity is

isotropic (scalar).

2. In the Nash model the shear stress magnitude is computed from

a rate equation based on an approximation of the turbulence

kinetic energy equation. This rate equation is a simple ex-

tension of the two-dimensional equation of Bradshaw et. al.
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(1967). The direction of the shear stress is computedby

assuming an isotropic eddy viscosity (scalar).

3. In the Bradshaw model the shear stress magnitude is computed

by the same equation as the Nash method° However a rate

equation, including a turbulence diffusion term is used to

compute the shear stress direction.

In general, it was found that all three methods predict the mean

velocity fields of a wide sample of available experimental results to

within our estimates of the uncertainty of the data. When compared

with each other, the three shear stress models produce almost identical

results for most flows° However at momentum thickness Reynolds numbers,

R@ , below 2000, in cases with strong adverse pressure gradients, the

three methods differ significantly. Direct shear stress measurements

were made in only two of the available experimental flows. For one of

these flows, Johnston (1970), the Nash and Bradshaw models give pre-

dictions of the shear stress magnitude which are significantly better

than those of the eddy viscosity model. For thi_ same flow the Bradshaw

method predicts the shear stress direction slightly better than the

other two models which used the isotropic eddy viscosity assumption

although no model predicts the direction very well.
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CHAPTER1

INTRODUCTION

A. General Considerations

The fluid dynamic performance of a diverse group of fluid machines,

e.g. aircraft wings, centrifugal compressors and ships hulls, is con-

trolled by the three-dimensional, turbulent boundary layers at the solid

boundaries of the devices. The behavior of the boundary layers is it-

self dependent on the pressure field imposed by the outer inviscid re-

gions of the flow. Although in some cases, particularly when flow

separation occurs, there is a strong interaction between the boundary

layers and the outer flow, in the present work, the outer flow has been

presumed given or known.

The boundary layers in most practical flows are in general exceed-

ingly complex. The flow is unsteady on a large scale, turbulent, com-

pressible and three-dimensional (three velocity components and three

independent space coordinates needed to define the flow field). Never-

theless most of the research to date has concerned the simplest class of

turbulent flows: turbulent layers that are steady in the large, incom-

pressible and two-dimensional (two space coordinates and two velocity

components needed to define velocity field). In 1968, a conference was

held at Stanford (Kline et. al. 1969) on prediction methods for this

simplest class of turbulent flows. The predictions of most methods

known in 1968 were compared to a carefully screened set of the available

data. A large number of the two-dimensional methods predicted the mean

flow well, even though none of those presented at the conference



included any but the most rudimentary physics of the turbulent struc-

ture. The best of the two-dimensional methods thus becamelogical can-

didates for extension to more complicated problems, i.e. those involving

large scale unsteadiness, compressibility and three-dimensionality. Al-

though considerable effort had been expendedon such advanced problems

prior to 1968, muchof it involved extensions of early methods which

were proven to be second rate or simply unsatisfactory at the Stanford

conference. For example, weworked on a three-dimensional momentum

integral type method based on the Von Doenhoff and Tetervin shape factor

equation. This shape factor equation was shownat the Stanford Confer-

ence to be unsatisfactory, even for two-dimensional flows.

This report documentsour research into the extension of someof

the better prediction methods of two-dimensional, incompressible, steady

turbulent boundary layers into three dimensions.

It is useful to consider briefly the basic ideas underlying three-

dimensional turbulent boundary layer theory. The most general type of

three-dimensional boundary layers are characterized by skewedvelocity

profiles, see Figure i.i. Skewedprofiles are distinguished from

collateral profiles in which all the velocity vectors from the wall out-

ward lie in one plane i.e. W s = 0 in Fig. i.i. Two-dimensional layers

and limited classes of three-dimensional layers have collateral velocity

profiles. It is common to describe three-dimensional boundary layer

profiles in terms of two wall-parallel velocity components - one in the

direction of the outer inviscid flow, the streamwise component Us, and

another perpendicular to this direction, the crossflow component W .' S



The wall-parallel velocity vector has magnitude _W 2 + U 2 and its an-
s s

-1Ws/U sgle relative to the inviscid external streamline is _ = tan .

The angle of the limiting wall streamline* is

_w = tan-l(lim Ws/Us) (I.i)

y-'0

Skewing (non-zero 8w or W ) of the boundary layer is commonlys

caused by three effects. (i) It may result from an external free

stream pressure gradient with a component normal to the local free

stream direction. The pressure gradient's normal component causes ac-

celeration of the low inertia, inner layer fluid such that the fluid

tends to turn with a smaller radius of curvature than that of the ex-

ternal flow. This mechanism is responsible for the boundary layer

crossflows on yawed wings and on the walls of curved ducts where it is

often referred to as secondary flow. (ii) Another cause of skewing is

the transverse motion of a wall under a boundary layer in a direction

perpendicular to the main flow. This results in crossflows being

formed purely by transverse shear stresses. End wall boundary layers

in axial flow compressors in part fall in this class. (iii) Finally,

skewing may be caused by a combination of the above effects when the

moving wall follows a curved path and induces, by drag action, the

inner layer fluid particles to follow curved paths. This fluid motion

in turn creates a pressure gradient normal to the wall velocity which

tends to give the inner fluid layers a component of velocity perpendic-

ular to the wail velocity. Flow over a disc rotating in a stationary

*See Maskell (1955), Johnston (1960a) for concept of limiting wall

stream-line.
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fluid is the most common example of this class of flow. In summary

whenever a pressure gradient or shear force exists perpendicular to the

external free stream velocity direction, the potential for crossflow

exists.

B. Experimental Data

Although almost all flow geometries lead to three-dimensional

boundary layers which are turbulent at high Reynolds numbers, only a

limited number of geometries and flow conditions have been tested that

have produced data suitable for developing and evaluating prediction

methods. Figure 1.2 shows the most common experimental configurations

which are:

(a) Wing-Body junctions (boundary layers on the body wall)

(b) Swept wings, finite and infinite in length

(c) Curved ducts (boundary layers on the flat walls)

(d) Radial vaneless diffusers with axisymmetric, swirling flow at

inlet

(e) Rotating discs

As part of this research program, a high percentage of available data

sources were gathered and examined for content, completeness and useful-

ness as a basis for testing prediction methods. A summary of the re-

sults of this data study are presented in Tablel.l. As can be seen, only

two flows include direct measurement of the shear stress profiles and

several flows are missing vital data such as the external pressure

field. In fact, of the total of 68 flows shown in Table I, only 34 are

complete enough to be usable and only 18 are expected to be of signifi-

cant value.

4



There exists a subset of these data which are particularly useful

becausewhile the velocity field must be described with three velocity

components, only two independent space coordinates need be used to pre-

dict .... _LLL=boundarv layer development This two-space coordinate subset

includes:

i. Plane of symmetry flows on flat walls upstream of symmetrical
+

wing-body _unctions.

2. Infinite swept wing flows where the external pressure is con-

stant in the spanwise direction.

3. Axially symmetric flows in vaneless diffusers.

4. Rotating discs and bodies in axially symmetric free stream

flows.

Flows of this type can be used as a first test of a prediction

method for three-dimensional turbulent boundary layers without necessi-

tating the development of a computer program using a three-dimensional

grid and without the necessity of handling difficult boundary conditions

at the transverse edges of the computed flow field. Most of the flows

of the two-space coordinate subset, denoted by a * in Table i.l, have been

examinedby us more closely than the other flows. The pressure gradi-

ents in the free stream have been extracted from the free stream veloc-

ity data and the wall shear stresses have been estimated by assuming two

different fits of the velocity profiles to the "law of the wall. ''++ In

+In these flows, only two velocity componentsare needed but a gradient
of the third component is required.

++Noneof the data selected from Table i.I had direct measurementsof the
wall shear stress. Recently, Pierce and his coworkers have been de-
veloping instrumentation for the direct measurementof the wall shear
stress in three dimensions (Kromenhoekand Pierce, 1968).

5



addition, momentumand displacement integral parameters have been calcu-

lated for each velocity profile and all the results have been tabulated

and plotted in a consistent format. The results of this work to codify

the data are used later on in this report and are presented and dis-

cussed in their entirety elsewhere (Wheeler and Johnston, 1971).

C. Separation in Three Dimensions

In several of the flow geometries discussed above and in many prac-

tical applications, the flowing fluid separates from the surface. Since

it is desirable that prediction methods be capable of predicting this

phenomenon a brief discussion of flow separation is useful.

A unique and most important characteristic of a three-dimensional

boundary layer is that the flow can separate from the surface without

the mean surface shear stress becoming zero. This type of three-

+ .
dimensional separation, known as ordinary separation, is distinguish-

able from singular separation whose principal characteristic is that the

local, mean wall shear stress is zero at the separation point. Separa-

tion in two-dimensional flows is singular.

The infinite swept wing flow, shown in Figure 1.3, serves to illus-

trate the occurrence of ordinary separation. When the pressure gradient

force on the fluid (which has a component only in the chordwise direc-

tion) is very strong relative to the shear stress force, the chordwise

component of velocity in the boundary layer will continuously decrease

as the flow approaches the trailing edge. Since the fluid at the same

point feels no spanwise pressure gradient forces, it will appear as one

+See Maskell (1955) for a more complete discussion of separation in

three dimensions.

6



views the boundary layer velocity profile along the y axis that the

local velocity vector is rotating toward the spanwise direction as the

flow proceeds downstream. The only forces that can resist this rotation

are shear stresses. Since we have assumeda pressure gradient suffi-

cient to overcome the chordwise shear stress effect, the velocity vector

near the wall will eventually have rotated as we follow the flow down-

stream until it is directed parallel to the leading edge (see the limit-

ing wall streamline in Figure 1.3). With no flow in the chordwise di-

rection, the fluid at a slightly larger chord must have come from somewhere

other than upstream, i.e. a backflow at the surface from the trailing

edge is required. Since the spanwise velocity is non-zero except at the

surface, there exists a finite wall shear stress along the separation

line. If the infinite wing had no sweepand no initial crossflow, sin-

gular separation would occur.

Singular separation can occur at a point on a line of ordinary sep-

aration. This occurs at the symmetry plane when the flow leaves the

body in a symmetrical wing-body iunction flow. In the case of axially

symmetric flows such as radial vaneless diffusers ordinary separation

occurs when the limiting wall streamlines becometangent to a circle

about the axis of symmetry.

D. Governing Equations

When boundary layer approximations are applied to the Navier-Stokes

Equation in the cartesian coordinate system shown in Figure 1.4 and the

assumptions are made that the flow is over flat surfaces, steady in the

mean, incompressible and has constant properties, the equations for the

mean motion in inertial coordinates are:

7



continuity

bu by =o (1.3)

x-momentum

%u __ %u _ i _Pu +v--+W77z =

_T
1 x

_y
({.4)

z-momentum

_xx _ _ i _p
U + V + W _zz = - 7 _z +----P_Y

_T
i Z

(i .5)

Euler's equations apply to the free stream, i.e.

I _P _Uco _Woo

-

i OP _Uoo _Woo

(i .6)

(1.7)

In the present work, the assumption of zero z derivatives

(_()/_z = O) has been made for infinite swept wings. In an r, @ and

z cylindrical coordinate system (r, 6, z) applicable to the vaneless

diffuser and rotating disc flows, (see Figure 1.2d) derivatives with

respect to 8 are assumed to be zero (_()/_8 = 0). A combined form

of the equations valid in both coordinate systems is obtained if in the

cylindrical coordinate system, z is replaced by y, x + r. rather
i

than r is the radial coordinate where r. is the inside or initial
l

radius. R is the local radius curvature of the transverse, 6 coor-

dinate axis. In the present work

could be a function of x, R(x).

R = r = x + r.
i

but in general, R

continuity

_x + +--= 0
(1.8)



x-momentum

p dx + _ _-- (1.9)

z-momentum

U + V + = - 7 _-- (1.10)

The terms in brackets I I are applicable only for the axisymmetric
J

cases. For infinite wings, R is effectively infinite.

These equations are valid for laminar flow in which case the shear

stresses are evaluated from:

_x/p = v _U/_y (l.lla)

/p = _ _w/_y (1 llb)
Z

For turbulent flows, equations 1.3 to I.i0 are valid for the mean motion,

and the shear stresses are a combination of the viscous stresses and the

turbulent, or Reynold's stresses:

/p = - u'v' + _ _U/_y (l.12a)
X

/p = - v'w' + . _w/_y (l.12b)
Z

Approximate closure equations to be discussed in Chapter 2 are necessary

to approximate the Reynolds' stresses and to solve the set of equations

for turbulent flows.

E. Methods of Solution

Since there exists no general analytic solution to the turbulent

boundary layer equations in two or three dimensions, it is necessary to

use numerical techniques. There are two general numerical methods for

solving the turbulent boundary layer equations: (i) the differential

approach in which equations 1.8 to i.i0 (together with the shear stress

closure assumptions) are approximated by finite differences - finite



differences being required in both the x and y directions. (ii) The

integral approach in which equations 1.8 to 1.10 are first integrated

with respect to y and the resulting differential equations solved by

finite differences in the x direction. These integrated equations,

known as the momentumintegral equations are generally used with a

streamline coordinate system (Figure i.i) where one momentumequation is

obtained along an external streamline direction and the other normal to

that direction. Thus, if the external streamline is curved, the coor-

dinate system will rotate as the computations proceed. In differential

methods, it is most commonto use a coordinate system which is fixed in

space or has somesimple well defined motion, e.g. a coordinate system

fixed to the surface of a rotating disc.

Due to difficulties in developing satisfactory integral methods

(discussed in the following section) only differential methods have been

treated in detail in the present program. In the following section,

integral methods are briefly outlined and someof their difficulties

emphasized.

F. Integral Prediction Methods

The momentum integral equations in three dimensions can take the

form (see Cooke and Hall (1962))

i _ 2 1 _ @I2Q _ 61 _Q_

hlQ_ _ (@IIQ_) + _h2Q_ _-_ ( + hlQ _ _

+

62 _Q_ (811-822) _h 2 (2@12+262 ) _h I Cfs

h2Q_ _ + hlh 2 _ + hlh 2 $_ - 2

in the streamwise direction (see Figure i.i) and the form

(1.13)
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i _ 2 i _ 822Q _2 _ (Qoo[e12-282])+_---_ _ (

hlQoo h2Qoo

+
(2812+262) _h 2 (e22-911-6 I) _h I Cfs

hlh 2 _- + hlh 2 _ - tanBw 2

in the crossflow direction.

(i. 14)

h I and h 2 are the metric coefficients defined so that an element

2 2 2 d_2 + dy2 h I and h2of distance, ds, is given by ds 2 = hld q + h 2

depend on the external streamline shape only and are presumed to be

known function of q and _ once the external pressure field is estab-

lished. _w is the angle of the limiting wall streamline and Cfs

the dimensionless streamwise component of the wall shear stress

1 2
Cfs = T /_pQ_

SW

is

The remaining dependent variables in equations 1.13 and 1.14 are known

as integral parameters and are defined as:

6
i

61 - Qoo / (Q°°-Us) dY
O

6

l / WsdY
62 - Qoo o

6
I

811 - 2 f Us (Qoo-Us )dy

Qo_ o

i f6 W_dy (i 15)822 - 2

Q_ o

6

17 H=8812 - 2 (Qoo-Us) WsdY 1/811

Qoo o

The momentum integral equations represent two equations in seven

unknown dependent variables. Thus a considerable amount of additional

information is required in order to effect a solution. The various clo-

sure assumptions used in two dimensions are well illustrated in Kline et

al. (1969). This additional information is usually supplied in two

forms. The first form is that of auxiliary equations which in some way
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directly relate the variables appearing in equations 1.]3 and 1.14 to

each other. For example, in three dimensions it has been found that the

streamwise component of the velocity often has a profile which is very

similar in shape to a known two-dimensional form. Thus, two-dimensional

wall shear stress laws have met with some success when applied in three-

dimensional prediction methods. Perhaps the most famous of these wall

shear stress laws is that of Ludwieg and Tillman which when carried over

to three-dimensional has the form

Cfs = 0.246[e-l'561H]Re 0"268 (1.16)
ii

The second manner in which the problem is closed is by the direct

use of assumed functional forms for the velocity profiles, both in the

streamwise and crossflow directions. Universal functions of the form

U/U = f(y/8) have met with very little success in prediction of two-

dimensional flows and there is no reason to believe that they would be

more successful in three-dimensional flows. However, one parameter

velocity profiles are a considerable improvement and one by Ling (see

Hirst and Reynolds, 1969) performed satisfactorily in an integral method

submitted at 1968 Stanford conference. He used

U -U

U - a(q) (i y/6) 2 (1.17)

T

Such a velocity profile could be used in a three-dimensional prediction

scheme if it were assumed that it represented the streamwise component

of the velocity. Coles (1956) and others have proposed two parameter

representations for two-dimensional velocity profiles which will gener-

ally fit data much better than equation 1.17. With these profiles, a

12



skin friction law is generally implied and an equation such as equation

1.16 is not needed.

Crossflow velocity profiles have proven muchmore difficult to

describe with a functional form than streamwise profiles. Prandtl

(1946) proposed that crossflow velocities could be represented by the

form
Ws
U - tanBwg(y/6) (l. 18)

s

where g(y/6) is a universal function, and Mager (1952) suggested

g(y/6) = (i y/6) 2 (1.19)

This profile model is simple - it requires only one parameter, Bw.

Figure 1.5 shows somedata of Gardow (1958) and Bradshawand Terrell

(1969) plotted in the form of equation 1.18. The data is too high

relative to the Mager profile for the most part but does appear to

approximately follow one functional form. The profile data of Cham

(1968) in Figure 1.6 shows a somewhatdifferent behavior and could not

be fitted by a simple function of y/6. Nevertheless, the Mager profile

is at least a fair approximation to the data and maywork satisfactorily

in somecases.

Another method of crossflow profile description is the polar pro-

file method. Figure 1.7 shows sometypical crossflow data plotted in

this form. In this approach, it is assumedthat the crossflow can be

expressed in the form:

W U
s _ f( s Parameters) (1.20)
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Johnston (1957) proposed a two region form of this function - an inner

region where

and an outer region where

W U
s S

Qoo - Qoo tan_w
(i .21a)

s -A _ s
Q_ (i. 21b)

A is now a second parameter. This model is also shown on Figure 1.7

and coincides with the data well except in the region of the peak. Cham

(1968) demonstrates another limitation of this method - that the cross-

flow cannot generally be straight all the way to the wall. For inte-

gral methods however, this is probably not a practical limitation. In

order to improve the fit of the polar model to the data in the region of

the peak, Eichelbrenner (1963) proposed using polynomial fits of the

form

W n U
s _-_ s

- _._ A i _-- (I. 22)
Q_ i=l

where A.(i = 1,2,...n) are constants. Figure 1.8 shows the fit of a
i

fifth order polynomial to the data of Gruschwitz (1935) and Johnston

(1957). In some cases the fit is very good but in others a definite

discrepancy appears in the outer part of the layer. This latter problem

can be quite severe as shown by the data of Bradshaw and Terrell (1969)

and Klinksiek and Pierce (1968) in Figure 1.9. The Eichelbrenner pro-

files use the position of the peak as a parameter to determine one of

the A. and Klinksiek and Pierce (1968) found that for all orders of n
i

less than six, the Eichelbrenner profiles could not match the data when

the peak was at large values of Us/Q . Klinksiek and Pierce also found

14



that some other polynomial suggestions of Eichelbrenner (1966) and

Shanebrook (1966) met with various difficulties. Figure i.i0 shows some

of Klinksiek and Pierce' "crossover" profiles which would challenge any

designer of crossflow velocity profile models.

Coles (1956) proposed a three dimensional form of the law of the

wall-law of the wake

_ [_ YQ_= QT %n --_ + C + _ w(y/6) (1.23)

where Q is a vector in the direction of the wall shear stress that
T

has a magnitude _Tw_. _Q_ is a wake vector whose direction is set so

that the free stream velocity vector is in the correct direction. _ is

thus a tensor whose magnitude sets the wake fraction of the profile.

Components of the velocity in a direction perpendicular to the wall

shear stress are proportional only to the wake function w(y/6). Figure

i.ii shows some data that show approximate agreement with Coles' model,

but Figures 1.12 and 1.13 present data which shows very poor agreement.

Pierce (1966) argues that the plane of symmetry flows which were used to

test the Coles model (Figures 1.12 and 1.13) were special cases in that

the flows move toward separation too rapidly and the profiles do not

reach an "asymptotic" or equilibrium form. He shows that the wake com-

ponent of the collateral flow on the plane of symmetry of the Johnston

(1957) data does not develop a wake function form ((_(y/6) above) either.

However, this argument can be turned into a criticism of integral meth-

ods for both two and three-dimensional cases because rapidly separating

flows are often of practical interest.

If one were to consider the Mager crossflow profile to be satisfac-

tory, and were to use a one parameter streamwise velocity profile, the

15



problem would be reduced to three equations (two momentum, one skin-

friction) in four dependent variables. Thus, for closure an additional

relationship is needed. Head, and his co-workers at Cambridge (see

Cham, 1968) have completed a similar set of equations by using an en-

trainment relation

(6-61 ) = CE(H6_81 ) (1.24)

where C E is a function of a new shape parameter H6_61 and 6 is the

boundary layer thickness. Cham, (1968) found however that C was ge-
E

ometry dependent as shown in Figure 1.14. It should be noted however

that the entrainment approach, in various forms, works well in two

dimensions. Recently Crabbe (1971) and Townsend (1970) have worked on

entrainment models which may lead to a more satisfactory form.

It can be seen that the extension of integral methods to three

dimensions is far from simple. To date, three-dimensional turbulent

prediction methods using integral methods have been unsatisfactory in

that they have been unable to provide predictions agreeing with a wide

variety range of experimental data. The extension of differential

methods to three-dimensional turbulent boundary layers, as will be seen

in Chapter 2, is easy by comparison. As a result, it was decided to

study only three-dimensional extensions of differential methods in the

present research program. The development in the later 1950's of modern

high speed digital computers has made one disadvantage of differential

methods, substantially longer computer run times, much less significant.

16



G ° Obiectives

In summary, the objectives of this research program were:

i. To collect and organize available data on three-dimensional

turbulent boundary layers

2. To develop a numerical technique and computer program to solve

the differential equations of the boundary layer such that

various three-dimensional prediction methods based on different

models for the turbulent shear stress could be evaluated with-

out introduction of ambiguity due to differences in numerical

technique used with each model.

3. To critically examine the selected prediction methods, both in

relation to each other and in relation to existing experimental

data.
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Table 1.2 - Key to Symbols and Remarks in Table i.i

['A] Definition of Symbols

AZ - Assumed zero

GA - Graphical values given - all runs and/or profiles
G$ - . 11 - some " " " "

IA - May be inferred from given data - all runs and/or profiles
IS - " " ,, ,, ,1 1, - some " " " "

NC - Not calculated

NM - Not measured

NR - Not reported, may have been measured

TA - Tabulated values - all runs and/or profiles
TS - i, " - some " , 11 11
9 - No information, or considerable uncertainty indicated

[B] Numbered Remarks

1. Report suggests that complete data will be published
at a later date.

2. Unpublished report obtained from authors.

3. Graphical Profiles may be of limited value since the

layer thickness not reported.

:'_. Only one profile giver_. Other integral data might be
extracted with much effort. Source of moderate cross:

flows not clear.

5. Give_1 integral parameters inaccurate, see Cham [1968].

6. Although flow at moderate subsonic Math number_variatio_s
were small and density changes thought not to be important.

7. Value of "_ for air at normal (room) pressure and

temperature will probably suffice.

6. One-dimensional turbulence intensity measured along ]o<ai
mean flow direction.

9. Some question of completeness here as original data
source not in hand.

Initial and normalizing conditions not given directly.lO.

2O



W
S

b
S

Figure i.i Three-Dimensional Wali-Pars!ie] Velocity

Components

21



PLAI'_ OF S_MI"[ETRY

\REGION OF
WiI_G

MEASUREMENTS

FLOW _

EPA _ ,_ _,

_ \ \ \ _ \ \ \ _ \ _ x \ \ \ \ \ _'.

(a) WING-BODY JU_ICT!C_J

FLOW

r

SEPARATIOPl
FLOW P0 II_T

(b) SWEPT WING

Figure i. 2 Experimental Geometries for Three-Dimens _onal

Turbulent Boundary Layers

22



L REGION OF
MEASUREMENTS R

(c) CURVEDDUCT

DIFFUSER

IMPELLER

REGION OF

MEASURE_G{NTS

EXiT

INLET

, ROTAT_OH

_, INLET

EXIT

(d) VAN_LESS DIFFUSER

Figure i. 2 (Cont'_)

23



Region of Measurements

\

(e) Rotating Disc

Figure 1.2 (Cont'd)

24



._

Q
._

,,-4

_J

o

o

@

e3

o

°_

25



U
r

W

U
f

r

X

Figure 1.4 - x-y-z Coordinate System

26



40

U]

1.0

0.9

0.8

0.7

0.6

1.0

0.9

0.8

0.7

0.6

0.5

0.q

0.3

0.2

0.i

0.0

i I i ,

I I I I

GARDOW A45.2

(D x = .360

El x = .530

_x = .710

I I 1 1 I

BRADSHAW & TERREL_

m

(9 x = .o59

[_ x = .i18

x = .235

O

%

0 0.2 0.4 0.6 0.$ 1.0

Y/6995

Figure 1.5 - Cross, flow Profiles in PranJtl Form

(Data of Gardow (1958) and

Bradshaw and Terrell (196:9) )

27



c£i

40

09

gl.

1.0

.8

.8

.6

.4

9
• a_

o

I I I I ! I I I I I I

%

0

0

(Dx = 0.0

D x = O. 166

x = O. 133

0

Figure 1.6 - Crossflow Pz,oflles ii: P_,andtl F o:'m
(Data of Cham (i768•I

28



Ws/Q _

64

0,3

_2

0.1 Port

oJ

oJ
o/
oZ
J

__'°!_i •

,;;-<1.... "
" l k..-< ) ' ",

0,1 0.2 03 0.4 0.5 0.6 CA7 0,8 0.9

Figure 1.7 - Polar Plots of Gardow (1958)

29



•.... .., ............... • ...... _;,-'_'-' "o--o-_..,_ ._.,.._

U S//_o_

Figure l.$a - Polar Plots of Gruschwitz (I_35) with

Eichelbrenner 5th Degr(:e Polynomials

3O



Ws/q _

0,3

O.2

0.1

0

0 _

I ---5 dr'gree Do, ynomral

s" _--o

_ c 0
jf

/ F- 3

"" ' I- I "E'_-'P'-_'"_ - .......

0,3

O.2

0.1

0

0

0

t
I

A-3

"// B -3

'C_21

_...O.C-._-O0._O )-0"-- O,

"_'_'_"-_Lo ° o [o

-°
"_. o o o oo_,_

o°
0.1 C2 03 04 OS O.E, 0.7 0.8 Og 10

U s/Q_

Figure 1.8b - Polar Plots of Johnston (].957) with

Eichelbrenner 5th Degree Polyncm_alt

31



1.0

0.9

0.8

0.7

o.6

0.5

_°8 o.

-. o.3

°2I0. i

0

! I I i I I I I I 1

A BRADSHAW and TERRELL (1969)

(_) KLINSIEK and PIERCE (1908)

/ °

0

&

°° °o _ooo_

\

0

o _
ichelbremner (1963)

5th Degree Polynomial

m

I i I I I I I I ! i

o.1 o.2 0.3 o.a 0.5 0.6 0.7 o.8 o,_ 1,o

Us/Q_

Figure 1.9 - Polar Plots of Bradshaw and Terrell '_Ld
Klinksiek and Pierce with Eichelbrcm_k-_.

5th Degree Polynomial

32



oO

oD

O0

O0

OD

O0

oD

O_

O0

o oO
o

o

oO

33



C_l

c]

8

I

.<i

@

<_

O

O4

2.0

1.6

1.6

1.2

.8

0

I I i I I
BRADSHAW AND

TERRELL (1969)

O x = .059

I[Ix = .i18

I I I I

Coles' Wak_

Function

A
O
A

I I

,AO

[9
(D x = .360

ox = .P3o

x = .710

0 .2 .4 .6 .o ±.0

Figure I.ii - Wake Function Compcn<_mt ._,fO_rd_,,_ a1_,J
Bradshaw and Terr_li ?_'of[les

34



2 Q sin (_w-_)

Q_ sin _w

16

04

R Un

6
7
8

• 12
• 13
v 14

22
.... _23

• 24
e26

Coles wake
function

y/5

Figure 1.12 - Wake Function Component for Hornung
and Joubert (1963)

35



Q sin (_w-B)

Q_ sin _w

1.0

0.8

O.6

O.4

0.2

0

/

S
Y

/J

/
/_-_ Coles

wake

function

0 0.2 0.% 0.6 0.8 1.O

y/8

Figure 1.13 - Wake Function Component for East and
Hoxey (1969)

36



o.7

o.6

o.5
ENTRAINMENT

CE

0.4

0.2

0. i

0

I I I I

Head (1958) (Two-dimsnsional)

I

2

S OURCE AND

TEX

ROTATING__

DISC

I I I 1,

6 8 lo la

SHAPE FACTOR H8_81

Figure 1.14 - Entrainment Functions from Cham {1968)

37





CHAPTER 2

SHEAR STRESS MODELS

A. General Considerations

As mentioned in Chapter l, a differential prediction method re-

quires closure assumptions for the turbulent shear stresses. Since the

mechanisms of turbulence production in three dimensions are not expected

to be essentially different from those in two dimensions, logical exten-

sions of two dimensional closure models are expected to be appropriate.

At the 1968 Stanford Conference (Kline et. al. 1969) differential meth-

ods with closure assumptions based on an eddy viscosity and differential

methods with closure assumptions based the turbulence kinetic energy

equation placed in the top third, according to the evaluation committee.

Differential methods using a third assumption, the mixing length model,

placed in the middle third. In the present work, three-dimensional

methods using extensions of all three types of closure assumptions above

have been studied and compared to the data.

For purposes of discussing fluid stresses, turbulent boundary lay-

ers can be considered to have two principal regions, an inner region or

viscous sublayer in which the effects of molecular viscosity predominate

and an outer turbulent region in which the turbulent or Reynolds

stresses are dominant. For the present work, calculations are only made

in the fully turbulent region and empirical functions are used to bridge

the gap that links the turbulent region to the sublayer and the wall.

Thus, for example, the "no slip" condition at the wall is not satisfied

explicitly but the "law of the wall" is used in its place. Experimental

+
data indicates that at y = 30 the velocity profile has deviated very
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little from what would be expected in a fully turbulent flow near a
+

wall. Thus y = 30 has been selected for the innermost meshpoint in
+

the calculation schemewhere y = yQT/_ and

lation to obtain wall stress and the angle 8w

of the methods developed.

B.

is _TW_ p . Extrapo-QT

are thus important parts

Shear Stress Closure Assumptions

In this chapter, only those closure assumptions which we have actu-

ally used for computations are described. A more complete summary and

discussion of closure assumptions is given by Reynolds (1970).

B.I Mixing Length Closure

The oldest of the shear stress closure assumptions is the mixing

length hypothesis. Spalding used such a model in the work he did for

the 1968 Stanford conference (Kline et. al. 1969). In the present work,

some computations of experimental flows have been made using the mixing

length and it has also been used extensively to generate starting shear

In two-dimensional flows the mixing length £ is de-stress profiles.

fined by

_21_UI _U

By analogy to laminar flow, an eddy viscosity can be defined as

Su
T=pE_

so the eddy viscosity is

(2.1a)

( 2. ib)

(2.1c)

must be selected to produce shear stresses which agree with available

data. This has been done on a number of occasions (e.g. Spalding at the

Stanford conference) and a useful formulation is
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= Ky y/6995 < 0.079<

0.079

= 0"0796995 Y/6995 >---7---

< = 0.40

(2.2)

where 6995 is defined as the value of y where Q/Qm is 0.995.

A possible extension of this model to three dimensions is to take

where Q is the velocity vector parallel to the wall

= 7U + 7W (2.4)

SO

= i _ + j _ (2.5)

or

I--_] =_--'U) 2 + _4_ 2 (2.6)

is assumed to be a scalar and to have the same form as that used for

two dimensions, e.g. Equation 2.2.

The shear stress direction can be calculated by assuming that the

eddy viscosity E is a simple isotropic scalar. That is, E is

assumed to behave like a molecular viscosity in a sheared fluid except

that the eddy viscosity is much larger. Thus, by analogy with equation

l.lla and l.llb

r = pE Su
x _ (2.7a)

z = pE _ (2.7b)

This would be a good assumption if boundary layer turbulence were a ran-

dom, disoriented type of motion such as occurs behind a grid. However,

boundary layer turbulence appears to have a vorticity with favored di-

rections and so the isotropic eddy viscosity is at best a crude

approximation.
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The mixing length model used here then consists of eqs. (2.2),

(2.3), (2.6) and (2.7a and b).

B.2 Eddy Viscosity Model

Mellor (1967) and others have used a variation of the mixing length

hypothesis called the eddy viscosity model. Both Mellor and Cebeci used

such methods successfully at the 1968 conference. The two-dimensional

form of Mellor formulation* is the same as the mixing length model in

the inner portion of the fully turbulent part of the layer:

(Ky) 21_ I (2 8a)Einner

In the outer portion, Mellor suggests use of a constant eddy viscosity

Eouter = (0.016) 61U _ (2.8b)

This model can be extended to three dimensions using the same idea dis-

cussed for the mixing length model, i.e.

= (0.4y)
Cinner

Eoute r = 0.01661Q _

(2.9a)

(2.9b)

The shear stresses in Mellor (1967) are also computed on the basis of an

isotropic eddy viscosity so equations 2.7a and 2.7b also apply to the

eddy viscosity model used in this study.

B.3 Two-Dimensional Bradshaw Model (Turbulent Energy Equation)

Bradshaw (1967) proposed a two-dimensional shear stress model fol-

lowing earlier work of Townsend (1960). It is based on the turbulence

kinetic energy equation (see Reynolds morphology (Kline et. al. 1969)).

*Mellor uses K = 0.41 but 0.4 has been used in the present work.
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product ion dif fus ion

+v
dissipation

+pE

Bradshaw made a number of assumptions in order to make this equation

useful for computations. First he assumed that the turbulent shear

(2.10)

stress is roughly proportional to the turbulent kinetic energy

2
= a q (2.11)

As a first approximation, Bradshaw concluded that a constant value of

0.15 for ! would be satisfactory but said that ! could be made a

function of y if necessary. The dissipation term is approximated by

E : (T/p) 3/2
L (2.12)

where L is the dissipation length, a function of y. Finally, Brad-

shaw made a large eddy transport assumption for the diffusion term and

postulated

i 2 TI/2T/03/2p'V' + _ q v' = G (2.13)
p max

where G is a universal function of y. Bradshaw suggests functional

forms for L and G based on his examinations of data (Figure 2.1).

The resulting equation for the shear stress is:

U _ (2-_p) + V --_ (2-_p) ! _U 1 3/2 ,maxl/2_ G'= - - -- (7) (2.14)p _:7 _ (7) p _Y

In the remainder of this report, T/p will be replaced by T for

simplicity.

Bradshaw's prediction method performed well at the 1968 Stanford

conference. One feature which makes it significantly different from the

mixing length and eddy viscosity models treated in this report is that
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it allows for a "shear lag". That is, a given meanvelocity profile can

have different shear stress profiles depending on the past history of

the flow. In the mixing length and eddy viscosity models used in this

report, the shear stress is a unique function of the meanvelocity

profile.

Another interesting feature of the Bradshawmethod is that with the

large eddy assumption for the diffusion, the equation system is hyper-

bolic. Bradshawand his coworkers (Bradshaw 1967) proved this point by

deriving the direction of the characteristic lines and the appropriate

ordinary differential equations valid along the characteristics. In

fact, Bradshaw's computer programs for both two and three-dimensional

calculations uses the method of characteristics. The mixing length and

eddy viscosity assumptions discussed here produce parabolic equations as

do the laminar flow shear stresses and are thus not solvable by the

method of characteristics.

Experiments show that for flows not too near separation, ¢ varies

slowly (by factors of 2 at the most) as the wall is approached. In

addition, U and V decrease as the wall is approached. Thus, to

first approximation, the meanconvective terms on the left of Equation

2.14 do not change order as the wall is approached. Since near the
_u

wall, G and L are small and _y is large, the dominant terms in

Equation 2.14 are the production and dissipation terms. Thus

_U ¢3/2

¢ _ - L (2.15)

or

2 _U 2
¢ = L (_77_) (2.16)

_y
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Since Bradshaw has proposed that L = % = 0.4y in the inner part of the

turbulent region of the flow, it can be seen that near the wall, the

Bradshaw method reduces to a mixing length method. In some cases how-

ever, the shear stress will lag the equilibrium (mixing length) value

which Equation 2.16 would predict.

B.4 Nash Method (Turbulent Energy Equation)

Nash (1969) proposed a three-dimensional extension of the Bradshaw

model. The equation for the shear stress magnitude proposed by Nash (an

approximation of the three-dimensional turbulence kinetic energy equa-

tion) is

_ [Tx _ _z _y_W T 3/2L _ _GT_I/2)]\maxU + V uY = 2a -- + (2.17)

To find the direction of the shear stress, Nash used the isotropic eddy

viscosity formulation which may be written

_x _U/_y

_-- = _W/_y (2.18)
Z

Nash also proposed slightly different values of L and G than given

by Bradshaw. In the present work, predictions which are labeled Nash use

the Bradshaw functions for L and G, but equations 2.17 and 2.18 to

compute the shear stress.

B.5 Three-Dimensional Bradshaw Method (Turbulent Energy Equation)

When Bradshaw himself approached the three-dimensional problem, he

took a different approach from that of Nash. Bradshaw started with the

exact equations for the mean x and y components of the Reynolds

stress, pu'v' and pv'w' With some approximations and the re-

quirement that the results be compatible with his two-dimensional result,

he suggested the following equations:
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x x _U

U _--x + V _--- = 2a L )]G_-I/2T
-_ max x

1/2

U _-_ + V _ -- = 2a _ L \ max Z/l

(2.19)

(2.20)

Alternatively, these equations can be expressed as Equation 2.17 for the

shear stress magnitude and an equation for the shear stress direction,

(TZ/TX):

U _x + V _y - 2a x _ - 1"z -- - max
LT

X

(2.21)

This equation differs from the isotropic eddy viscosity model in two

important respects. First, the addition of the diffusion term means

that in the outer part of the layer, the equilibrium shear stress di-

rection can be different from the direction of the mean velocity gradi-

ent. Secondly, the shear stress vector direction can lag the equilib-

rium value.

A total of four three-dimensional shear stress models have been

presented here. They are summarized in Table 2.1. The mixing length

and eddy viscosity models are similar in most respects and thus exten-

sive calculations have been done only with the eddy viscosity model.

Any one of these shear stress models, together with the momentum and

continuity equations (equations 1.8 to i.i0) form a closed set. The

only additional requirement needed to perform calculations are the

boundary conditions, both at the wall and at the outer edge of the

boundary layer.

45



C. Boundary Conditions

C.I Outside Edge Boundary Conditions

For infinite wing flows, the boundary layer velocity is forced to

be the prescribed free stream velocity by allowing

_U dP

lim U_ = - d-_
y-_

_P

Since _z is zero,

(2.22)

SO

(2.23a)

W = constant (2.23b)
oo

For the axisymmetric vaneless diffuser cases, the outer conditions are:

1 oo_ _ Uim _2) = - _xdP (2.24)
y-_

(2.25)

become

In the computations,

and

0
Y

8u
As the edge of the boundary layer is approached, _ and

zero and the shear stresses also approach zero.

the grid is expanded in the y direction so that these conditions are

satisfied by increasing the distance between the mesh points. In some

cases, this has required that the computing grid be extended to 1.86995 •

C.2 Wall Boundary Conditions

The general boundary conditions which must be satisfied at solid

walls are the "no flow" (conservation of mass) and "no slip" conditions

which specify that the y, x and z components of velocity are zero

at the surface. However, in the region close to the wall (y+ _ 30),

the fluid velocity changes very rapidly with increasing y - in fact,
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it is commonfor the velocity to reach 50%of the free stream velocity

in only 5%of the boundary layer thickness. This large y gradient of

velocity, which would require a large number of grid points for compu-

tation, combinedwith the necessity of considering both turbulent and

viscous shear stresses in the wall regions makes it desirable to use

empirical functions to pass over this region. This approach does not

satisfy the no-slip, no flow conditioiLs directly. These conditions are

implicit in the empirical functions.

In two-dimensional flows, a function knownas the "law of the wall"

describes the velocity profile in the wall region

_- = f(yQT/_) (2.26)
QT

In the fully turbulent part of the flow, the law of the wall takes the

form

YQT
9,_ = ! _n-- + A (2.27)

QT < v

This expression can be derived from the mixing length formula if it is

assumed that the shear stress is constant, and equal to the wall value.

Equation 2.27 also applies to three-dimensional flows if the assumption

can be made; an assumption which is quite good in most cases. In fact

if the velocity direction has a linear variation of 4 degrees (which is

+ I /Ihigh) between the wall and y = 30, _y deviates from _Q/_y by

+
less than 5% at a y of 30. The deviation is less at lower values of

+
y . A somewhat more general form of Equation 2.27 is found if it is

assumed that the shear stress magnitude varies linearly between the wall
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and the point in question. The resulting expression, which was first

derived by Townsendfor two-dimensional flow (in a slightly more sophis-

ticated form) is:

___ i YQT i [QT = _ #n--+_ A + 7 2_n

where

2 1/2 i](I+X) 1/2+1 + 2(i+×) (2.29)

X = T/T w - i

In our computations, this expression is used to compute the wall shear

stress magnitude by substitution of the value of the computed velocity,

Q, and shear stress T at the first mesh point out from the wall and

iterating to get QT" K is taken to be 0.4 and A to be 5.0. The

wall shear stress thus obtained reenters the calculations because it is

used to calculate the shear stress gradients _r /_y and _ /_y
X Z

which appear in equations 1.9 and i.i0, at the first mesh point.

To calculate the shear stress gradients, it is also necessary to

know the direction of the wall shear stress. The direction of the shear

stress vector changes much more rapidly than the direction of the veloc-

ity vector in the wall region. This can be seen by examining the polar

plot shown in Figure 2.2 and noting that if the isotropic eddy viscosity

assumption is valid it follows that

- _U/_yJ (2.30)
X

Between the origin and the peak of the polar plots, the shear stress

direction has varied from _w + to zero whereas the direction of the

+At the wall, the shear stress and the limiting wall streamline must

have the same direction.
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velocity has changed only slightly. Several methods were tried to find

the direction of the wall shear stress (Appendix B) but difficulties

were found with most of them. The most satisfactory method appeared to

be extrapolating to the wall from the first point away from the wall by

a Taylor series where the derivatives _V and _-_ are
estimated from

_y _)y2

the first three mesh points in the y direction.

Yw = Y1 - Yl + 0.5 _y2 Yl
(2.31)

This is a slight improvement over simple linear extrapolation from the

first two mesh points away from the wall.

The final boundary condition is the specification of the normal ve-

locity at the first mesh point, V I. V I can be found from an integra-

tion of continuity (equation 1.8)

V 1 = -- + _ dy
o

If it is assumed that the flow is collateral between the wall and the

first mesh point

and

The velocity

between

(2.32)

_U _Q cos Y1_x - _x

+ y+y =Ii and = 30 and by

Q was assumed to be represented by Equation 2.27

+
from the wall to y = ii.

2.35 and subsequent integration of Equation 2.32 are performed, the fol-

+
lowing expression is obtained for V at y = 30:
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(2.34)

_- = yQ_/_ (2.35i
QT

If the differentiation of Equations 2.27 and

U = Q cos YI (2.33)



V

y+=30 (4= cos YI 05_ _-/Q_ + 298_/

+ 296.5 sin Yl _-- _

(2.36)

are evaluated by differencing from previously computed

profiles. In most cases, the first mesh point is very close to the wall

and V 1 = 0 is a satisfactory approximation. This assumption (V I = O)

has been made in the plane of symmetry flows but expression 2.36 above

has been used for the other flows.

D. Summar_

The basic idea pursued in this report is that until each of the

ideas presented here for shear-stress closure of the three-dimensional

boundary layer problem is tested, it is futile and perhaps unnecessary

to develop new and potentially more complex schemes. In the following

chapter a numerical computing scheme into which each of these shear

stress models can be tested is developed. The computing method is not

intended to be the ultimate in efficiency, but rather to allow a proper

test of the closure models outlined here. The computed results are com-

pared with actual data and to each other in chapters 4 and 5. Without

proof at this point, it is worth stating one of our principal conclu-

sions: the current shear-stress closure models are sufficiently accu-

rate to deal with all problems (except possibly those of the rotating

disk type which was not tested) on which data are currently available.

Thus, on a practical level we do not recommend major theoretical efforts

on closure schemes for this kind of problem at the present time.
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Table 2.1 SHEAR STRESS MODELS

i. MIXING LENGTH

_x = _2(_y +_Y_U2 _U 211/2 _Y_U

= 0.4y Y/6995 = < 0.198

= 0.0796995 Y/6995 = > 0.198

2. EDDY VISCOSITY

=E 8U
rx _yy

E. = (0.4y)
inner

Eoute r = 0.01651Q m

3. TURBULENCE KINETIC ENERGY

U

U_xx+V = 0.3 +x_yy _z_y

3/2

L
G_ 1/2

_y max /

3a. NASH

•,l x--

3b. BRADSHAW

_x + V _y - 0.3LT2k_y r
x

z- - G1"l/2max (3y
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CHAPTER 3

NUMERICAL METHOD

A. General Considerations

The numerical method adopted here is similar to that used by Nash

(1968, 1969). Although the general approach and some specific details

are due to Nash, the actual computer program and fine points of the

numerics were developed independently. Very recently Nash (1971)

developed a more sophisticated numerical technique but this has not been

used in the present work. The procedure can best be described as an

explicit forward difference method. Explicit methods are often crit-

icized because they require a large number of steps in the x direc-

tion - in fact it can be demonstrated that explicit methods become

unstable in many problems if the x-step is too long. Implicit methods,

on the other hand, can often take as long a step as is desired, numer-

ical accuracy providing the upper limit on step length. Nevertheless,

the explicit method used seems well suited to the present application

for a number of reasons:

i. The sets of equations formed with two of the proposed shear stress

models being tested (Nash and Bradshaw) are hyperbolic, not para-

bolic as are the laminar boundary layer equations and turbulent

boundary layer equations using an eddy viscosity closure assump-

tion. This means that there exist real characteristic lines and

regions of dependence and independence.
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dY__alacteristic Lines

In the sketch, the region within the triangle contains flow which

is entirely determined by information on the line AB. This infor-

mation in a finite difference approximation consists of the values

of, and derivatives of, the dependent variables at point P. An

attempt to extrapolate from point P to a point beyond point C

would require information from outside the interval AB. The net

effect is an upper limit on the x-step, dx, which is proportional

to the y-step, dy This limited x-step is in fact considerably

shorter than would be required by an implicit method simply for

accuracy and thus an important advantage of the implicit method is

lost.

2. To use the numerical method described here, it is not necessary to

transform the momentum or shear stress equation from the forms in

which they are normally presented in the literature - only a minor

rearrangement is required. This is particularly useful when, as in

the present study, it is required that several possible equations

be used.

3. Although a large number of x-steps are required, the computations

at each step are less complicated than in most implicit methods

*If one were to carry computations all the way to the wall the minimum

y-step would be very small and would require an extremely short

x-step. This fact is the main reason the region close to the wall is

passed over with empirical functions.
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and the computation times for complete flows are not increased in

proportion to the number of x-steps. For example, the present

method requires about ten times as many x-steps as the method used

by Mellor and Herring at the 1968 Stanford Conference (Kline et. al.

1969) but requires only about two to three times the computer time.

Using 20 meshpoints in the y-direction and Fortran IV, level G

on an IBM 360/67, the program executes three to four x-steps per

second. Each step movesa distance of 0.2 to 0.58995•

B. Numerical Procedure (Overview)

Consider Figure 3.1 on which are shown two successive x stations

and their respective grids in the y direction. If the values of all

variables are known at x then it is possible by Taylor's series expan-

sion to extrapolate to x + dx by

+ dx _+_ + O(dx 2) (3.1)
Ui ,x+dx = U'

l,X \ox/i,x

where the x-component of velocity U is used as an example. _('_X_, x

can be obtained from the x-momentum equation (Equation 1.9).

- U - _x + _--x - V i (3.2)
i,x i,x ,x ' i,

Of course, some care is required in evaluating the derivatives on the

right side of equation and expression 3.1 is an approximation valid

only to order dx 2 if dx is finite. The approximation is improved

by first extrapolating to (x + dx/2)evaluating _I_x)' i ,x+_ at

(x + dx/2) and then extrapolating from x to x + dx using

Ui,x+dx = U. + dx--'_I_xl
(3.3)

l,X i,x+_
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This approach is considered accurate enough for our purposes. For

example, in early work, Equation 3.1 was used and was found to produce
dP

appreciable errors when d_x was integrated to produce the experimental

free-stream velocity in cases with strong adverse pressure gradients.

These errors were eliminated when equation 3.3 was used.

Each variable except the normal velocity V can be forward extrap-

olated in this way. The general procedure (Equation 3.3) is used for U

and W in the eddy viscosity and mixing length methods, U, W, and

in the Nash method and U, W, _ and _ in the Bradshawmethod. Thex z

appropriate momentumor shear stress equation is used in each case to

evaluate the x-derivatives as shownby example in Equation (3.2).

V, the normal velocity, need not be extrapolated but can be cal-

culated at the new x station directly. This is done by eliminating

_U/_x between the continuity (Equation 1.8) and x-momentum(Equation

1.9) equation to obtain

yl IV = / _'_ + -- - R /U dy (3.4)
o

V I is estimated by the method of Chapter 2 at the first mesh point and

then V at the remaining points is evaluated by a numerical integra-

tion of Equation 3.4 from Yl to the outer mesh point.

The wall shear stress is determined by an iterative process that

leads to satisfaction of the law of wall, Euqation 2.29. This procedure

normally converges in two or three iterations.

The wall shear stress angle, Yw' is calculated by a Taylor series

expansion in y about the first mesh point. _ is the angle between

the projection of local velocity vector in the plane of the wall and the
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x axis. Thus the wall value of _' Yw' is found by

2
_(w= Y1 - YI(V2-YI)/(Y2-Yl ) + 0"5YI[(Y3-Y2)

(3.5)

/(y3-Y2) (_2-_i)/(y2-Yl ) I/[0.5(Y3-Y I)

Nash (1968) found that an interpolation procedure was necessary at

each x-station in order to damp out irregularities in computed profiles

which led to numerical instabilities. Our procedure uses alternating

meshes at adjacent x-stations. All variables are transferred from one

mesh to the other by interpolation after each forward extrapolation.

The process of interpolation has the added advantage of enabling the y

mesh step size to be adjusted so that the y-mesh always just fills the

boundary layer, when the number of y mesh points (usually twenty in

our calculation) is fixed.

C. Numerical Procedure (Details)

C.I Differentiation in y-Direction

Differentiation of all dependent variables except Q, the velocity

magnitude, is accomplished by a three point procedure which fits parab-

olas of the general form

= A + Bx + C_ 2 (3.6a)

to the tabular profiles. In Equation (3.6a) x is the independent

variable (y) and _ is the dependent variable. The coefficients at

a point k are found from

C = [_ + (_k-_k_l)/(Xk+l-_k) ]/(Xk_l-Xk+l ) (3.6b)

B = _ - C(Xk_l+X k) (3.6c)

A = _k-i - (B+CXk-l) Xk-I
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where

= (_k-_ k_l ), (Xk-Xk_I) (3.6d)

The derivative of a dependent variable at the ooint k is thus

= B + 2Cxk (3.7)
k

The velocity magnitude presents greater difficulty. In the inner

regions, because the solution behaves like the law of the wall, it is

close to logarithmic in form. This is not the case in the outer parts

of the layer. Simple, parabolic fitting does not produce accurate

derivatives in the logarithmic region. In early stages of the work, a

logarithmic fitting procedure was used in the inner region and parabolic

in the outer region but a suitable, general cross-over point proved dif-

ficult to find. Finally, it was decided to subtract from the velocity

magnitude profile the value which would be computedby Equation 2.27.

The difference, _ was then differentiated by the parabolic method and

the desired result found from

At the first meshpoint, YI' a two point rather than a three point

method was used to differentiate _.

C.2 Integration in y-Direction

Integration is also performed by fitting parabolas. If an integral

from _ to x. is desired, the coefficients are found by use ofi-i i

equation 3.6 and the result is

X.

N _i__i_ 11 i _2 _2fN l ydy = A( + _ B(xi-xi_ I)

xi_ I (3.9)
i _,_3 N3

+ _ b_xi-xi- l)
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C.3 Interpolation

The grid points are distributed in the y direction so their spac-

ing is small near the wall and larger toward the edge of the layer. The

form chosen to obtain such a spacing is

Yi = $[_i/N + (l-_)(i/N) 2] + C (3.10)

where N is the number of points in the y direction; i is the point

number (I, 2 etc.); and _ takes on a value of either 0.2 or 0.4. The

constant C is adjusted so that the first mesh point occurs at a de-

sired value of y+, usually 30. 6 is an arbitrary multiple of 6995 .

The multiple is usually set at 1.6 but values from 1.4 to 2.2 have been

used for various flows. 6/6995 is selected so that the profiles do not

become "clipped" at the outer edge (see section C.I in Chapter 2).

At alternate x-stations two different grids computed by Equation

3.10 are used. This is accomplished by alternating _ between 0.2 and

0.4. Variables are transferred from one grid to the other by interpola-

tion. Interpolation at each x-station can cause problems. If only a

very small error is made at each step and if it is always in the same

direction, after many steps, the accumulated error can be large. A

parabolic fitting procedure was found to be adequate for all variables

except the velocity magnitude. Four points are used for each fit as

shown in Figure 3.3. The average value of the two fitted parabolas is

accepted as the result.

The velocity magnitude presents much the same problems for interpo-

late as it does for differentiation. It is even more critical to inter-

polate accurately particularly as good performance is required near the

outer edge of the boundary layer so that 6995 can be determined with
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precision. A number of things were tried but ultimately the two-

dimensional law of the wall-wake was found to work very well. The two-

dimensional law of the wall-wake (Coles 1956) is assumed to approximate

the velocity magnitude, i.e.

Q = Q_[2.5 _n y Q_/_ + 5

+ 2.5_(i cos(_y/6)] y < 6 (3.11a)

Q = Q_ y > 6 (3.11b)

where the wake function is approximated by a cosine form. In this

application 6 was taken as 6995 • _ was then evaluated so that Equa-

tion 3.11 matched the known value of Q_ at y = 6995 . The value of Q

computed by Equation 3.11 was then subtracted from the tabular Q pro-

file. Parabolic interpolation was performed on the difference between

the tabular profile and the result of Equation (3.11) and a value com-

puted by Equation 3.11 added to obtain the final result.

C.4 Length of x-Step

As mentioned previously, the Nash and Bradshaw methods result in

hyperbolic equation sets. If too large an x-step is taken, the methods

become unstable and diverge very rapidly. Setting the x-step as a

simple fixed fraction of 6995 was tried but instability resulted in

some cases. It was reasoned that although the method of characteris-

tics is not being used explicitly, the same stability criterion should

be applicable to the present approach to the problem. Regions of depen-

dence and independence will be the same. Thus it was decided to use th_

criterion for the step length used by Bradshaw (1967).

dx = (dy/tan _)min (3.12)
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where _ is the angle of the characteristic lines. From Bradshaw

(1967) the characteristic angles are computedfrom

V + aNTI/2 + (a2G2 I/2/U= _ + 2a_) (3 13)max-- max

No problems with instability were encountered when this approach was

used. This criterion is also used for the eddy viscosity and mixing

length calculations, although not needed, in order to maintain approx-

imately the same x-step and thus eliminate possible differences in

accuracy of the respective results due to x-step differences.

C.5 Integral Parameters

In order to comparedata to computed results all the integral

parameters defined in Chapter 1 are calculated at each x-station where

printout is required. The integration procedure of section C.2 is used

for this purpose. The portion of the integrals between the wall and the

first meshpoint are evaluated in much the sameway as the normal veloc-

ity V is calculated - by assuming that Equation 2.35 is valid to
+ +

y = ii and Equation 2.27 from y = ii to the first point. For this

calculation the flow is assumedcollateral in this region.

C.6 Starting Profiles

In order to start calculations, it is necessary to have profiles of

U and W at the first x-station. The Nash and Bradshawmethods also

require starting shear stress profiles. It is possible to input these

profiles or to generate them from integral parameters given at the

starting value of x. The streamwise velocity profile is generated here

by using Equation 3.11 with U substituted for Q and the streamwises

componentof the shear stress used for Q_

U_s = Q_co_S_w (3.14)
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U andTS_

the start.

11 are evaluated by inputing values of

The following equations (Coles 1956)

8U 21I
Qoo _ 1 _n ______s+ 5.0 +--
U K _
TS

H, _ii

(81-011)
K - i+_

6U
Ts

2

(61-011) Q_
2K

6 u
Ts

- 1. + 1.6_ + 0.76112

and Q_ at

(3.15a)

(3.15b)

(3.15c)

are solved simultaneously by an iterative scheme for U and _. The
Ts

crossflow velocity profile is then generated by the triangular polar

profile of Johnston (1957) (Equation 1.21) with given tan_w and A as

input to the program.

D. Verification of the Computer Program

When results of a three-dimensional turbulent boundary prediction

method layer are compared with data, discrepancies will be noted which

are due to three distinct causes - (i) numerical errors or inaccuracies,

(ii) inadequacies of the physical equations and (iii) errors or inaccura-

cies of the experimental data. The objective of the present research

program is to examine the merits of the physical equations and it is

thus desirable to minimize (i) and (iii) above. Unfortunately, nothing

can be done about item (iii) directly but it is hoped that the influence

of experimental errors on the general conclusions will be minimized by

making comparisons to several sets of experimental data. To verify that

numerical errors, (i), were not significant, comparisons of the results

calculated by the present computer program have been made to the com-

puted results of other workers. In addition internal momentum integral

checks were made on the computations.
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D.I Momentum Integral Checks

Although we are solving the differential equations of motion

(Equations 1.9 and I.I0) by finite differences in the y direction, the

computed results should satisfy the momentum integral equations which

consist of integrating Equations 1.9 and i.I0 with respect to y

(using Equation 1.8 also). In the x direction, the momentum integral

equation has the form

_x [Q21 - C2e 2e22ii - 2cse21 + S + CS621 ]
(3.16a)

i [Q21($2_C2)_I_14CS_21 + ($2_C2) e22 + CS62 + $2621]+i

_c

_x [CQoo61 + SQoc82_ = 0"5Q2Cf c°SVw

where

C = cos _ = cos _oo (3.16b)

S = sin , -- sin Yoo (3.16c)

In the present computer program, the left (LHS) and right (RHS) hand

sides of this equation have been integrated by the trapezoidal rule from

the start of the computations to each value of x. If the computations

had no numerical errors, the integrated left and right hand sides should

be identical. + Momentum integral unbalance is defined as

X X

f LHSdx - f RHSdx

Unbalance (%) = o o
X

f RHSdx

O

In most of the flows studied in the present study, the momentum inte-

x i00 (3.17)

gral unbalance has been kept under 10%. The exceptions are the adverse

The effect of a poor shear stress closure model would not be reflected
in this test.

64



pressure gradient flows at low Reynolds numbers (the vaneless diffuser

flows) where due to the large distance between the wall and the first

meshpoint (order of 0.16995) the empirical functions are put to a

severe test. Unbalance for the separating vaneless diffuser flows of

up to 100%have been observed. This is not as bad as it mayappear

however and can be clarified by examining the simpler form of Equation

3.16, the momentumintegral equation for two dimensions.

d_ll (2_ii+61) dQ_ Cf
d---_+ Q_ dx - 2 (3.18)

In an adverse pressure gradient, the first term on the left side of

Equation 3.18, is always positive whereas the second on the left hand

side is negative. The momentumunbalance is based on an error in the

difference of these two terms. In manyof the vaneless diffuser flows,

this difference is only about 5%of the magnitude of either term and

thus a 5%error in one term would cause a 100%momentumintegral unbal-

ance. The momentumintegral check, whenapplied in the form of Equation

(3.16) is thus a very sensitive test. In the moderate Reynolds number

flows, the 10%maximumunbalance indicates good performance of the

numerical scheme. While better numerical schemesmight produce even

smaller momentumintegral unbalances, it is doubtful if the improvement

would show in comparisons to the data. Momentumintegral balance checks

are not, however, sufficient to verify the adequacy of the computing

scheme. The possibility of compensating errors is not eliminated.

Thus, it is desirable to comparepredictions to those madewith other

numerical schemesusing the samephysics.
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D.2 Comparisons to Other Predictors

In Figure 3.3, predictions using the eddy viscosity model are com-

pared to the predictions of Mellor from the 1968 Stanford conference for

the Ludwieg and Tillman strong adverse pressure gradient flow (flow

1200). As can be seen, the agreement between the predicted results is

good. Both predictions show poor agreement with the data because

neither allowed for the streamwise convergence of the flow, which was

substantial in this experiment. Also shown in Figure 3.3 are the re-

sults of Cebeci from the 1968 conference for the same flow. His results

are slightly different but not significantly so. Cebeci uses a slightly

different model for the eddy viscosity but the differences are probably

mostly numerical.

The predictions of the present method shown in Figure 3.3 were

calculated using 20 mesh points. When calculated using 30 mesh points,

no appreciable change in results was seen (e.g. R_ only changed from

24,010 to 23,851 at x = 3.5 feet).

The present method uses a more than adequate number of x steps

for good accuracy. The large number of x-steps is a requirement of

Equation 3.12. Further reduction in the x-step can produce a deterio-

ration in the computed results. In the above Ludwieg and Tillman flow,

halving the x-step with 20 y points increased the average momentum

integral unbalance from 3% to over 20%. This effect is primarily due to

increased errors due to interpolation.

Figure 3.4 presents results of the Nash method calculations com-

pared to the results of Nash himself (1969) for the Cumpsty and Head

Infinite swept wing flow. The velocity profile shown is for the largest
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value of x. The agreement between predictions is quite good and the

differences which are apparent are probably the result of different

interpretations of the external pressure gradient. Most attempts by

predictors show poor agreement with the data for this flow; the cause

is not known.

In the present work, all prediction methods use essentially the

same numerical method and it is thus expected that while comparisons

of predictions to data will show some effects of numerical inaccura-

cies, comparisons of methods to each other should De more accurate.

However, the results shown by Figures 3.4 and 3.5 indicate that numer-

ical errors should be small in most cases.
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CHAPTER 4

COMPARISONS WITH EXPERIMENT

A. General Considerations

The worth of any prediction scheme for turbulent boundary layers

can be fully assessed only when it has been compared with a wide variety

of experimental data. Although the selection of good three-dimensional

turbulent boundary layer data is not extensive, some good data do exist

(see Chapter i). In this chapter, predictions have been attempted for

ten experimental flows using three prediction methods (Nash, Bradshaw

and eddy viscosity). In addition, a fourth method, the mixing length

method, has been tried on some flows.

+
The experimental flows fall into three general geometric classes:

(i) plane of symmetry flows at the plane of symmetry of wing-body junc-

tions, (ii) infinite swept wing flows, and (iii) radial vaneless dif-

fuser flows. Each of these flows requires the use of only two indepen-

dent space variables. Hence, to the limit that the data satisfy this

assumption, the entire boundary layer flow field is calculated for the

infinite wing and vaneless diffuser flows. On the other hand, in the

plane of symmetry flows, only the flow at the plane of symmetry is cal-

culated. For general information about each experiment which is dis-

cussed, the reader should consult Table i.i.

In this chapter, a convention has been used for the curves repre-

senting the predictions of the various methods. Except as noted, this

convention is:

+A fourth class of flows, the flow on a rotating disc was not success-

fully predicted. The attempt to compute this class of flows is dis-

cussed in Appendix C.
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Bradshawmethod

Eddy viscosity method

Nashmethod

Mixing length

Eddy viscosity with low

Reynolds numbercorrection

(discussed later).

B. The Flow at a Plane of Symmetry

Plane of symmetry flows fall into the general class of three-

dimensional flows which can be predicted using only two independent

space variables as discussed in Chapter i. On the symmetry plane, how-

ever, three-dimensionality enters not as a crossflow but as a gradient

of the crossflow in the direction perpendicular to the symmetry plane.

_w
Thus, the crossflow velocity W is zero while _ is non-zero. Rather

simple modifications of the equations presented in Chapter i are thus

required to predict the flow on the plane of symmetry. Since _z is

non-zero, the continuity equation (Equation 1.3) takes the general form:

_u _v _w
_-_+_+_= 0 (4.1)

rather than the restricted form (Equation 1.8) used for all the other

predictions in this report. Since W is zero, the x-momentum equation

(Equation 1.4) reduces to Equation 1.9 as for the infinite swept wing,

but Equation 1.5 becomes a 0 = 0 identity. However, the appearance of

_w
in Equation 4.1 requires a new equation which can be obtained by8z

differentiating z-momentum, Equation 1.5, with respect to z and

_u _w
noting that symmetry requires that W - Sz - By - O. The resulting

equation is:
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(4.2)

By assuming that the free stream is irrotational

_u _w

_z - _x (4.3)

then in the free stream

(4.4)

The right hand side of Equation 4.4, which can be obtained from the

data more readily than the left hand side, is used to evaluate the term

_--_'_) which appears in Equation 4.2. &
Z

Equation 4.2 introduces another stress variable _--z" In the

models which use the isotropic eddy viscosity assumption to compute the

Z

shear stress direction, _-z can be obtained by differentiating Equa-

tion 2.18 with respect to z

Z

Oz

Z

In the Bradshaw method, _z

tion 2.20 with respect to

to obtain the following expression:

_w _u
- (4.5)

can be obtained by differentiating Equa-

z to obtain

1/2 &_
T z

L chz

(4.6)

- "max N G _z /J

Thus, with a few minor changes, a set of equations is obtained which are

_w _Tz
similar to those of the infinite swept wing except that _--_ and _z

are used as dependent variables instead of W and T
Z

B.I Johnston Plane of Symmetry

The geometry of this flow is sketched in Figure 4.1. Johnston

(1957, 1960b) measured mean velocity profiles at many points all along the
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plane of symmetry from x = 0 to x = 2.5 feet (see Figure 4.1) and at

points off the symmetry plane from x = 2 to x = 2.5 feet. Examina-

tion of Equations 4.2 and 4.4 shows that (_W/_z)_ is needed in order

to make predictions. Since Johnston did not measure velocities off the

plane of symmetry for x less than 2.0 feet, (_W/Dz)_ had to be

_v

obtained indirectly. This was done by assuming that _y was zero on

the centerline of the flow so the continuity equation yields

_w _u

8z - _x (4.7)

This result cannot be justified directly from the data but the results

so obtained fair in smoothly with the direct measurements at x = 2.0

feet (Figure 4.2).

The calculated results of integral parameters are shown in Figure

4.3. H is the two-dimensional shape factor

61
H -

ell

Cf is the normalized wall shear stress

(4.8)

(4.9)

and R 9 is the momentum Reynolds number

Re = Q_ll/V

the remaining parameter shown in Figure 4.3 is defined as

$_12 i 6 ._/

-_z - 2 f [(Qoo'Q) _z ]dy

Qoo o

is the only cross flow term appearing in the momentum integral
8z

equation on the plane of symmetry (see Johnston 1960b):

_ell i _Q_ _12 Cf

_----_ + (2eli+61) Q_ _x + _z - 2

(4.10)

(4.11)

(4.12)
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With the exception of the last data point, the agreement between the

predictions and the data is good for all methods. The Nash and Brad-

shaw results are indistinguishable. Unfortunately, the freestream

pressure gradient is uncertain at the last data point due to a dis-

crepancy between tabulated snd graphical results in Johnston's report.

A major factor which causes the results to be essentially the same

is the short length of the flow (about ten times the upstream boundary

layer thickness) and the strong adverse pressure gradient which causes

the pressure terms to dominate the shear stress terms in the momentum

equations. For example, at x = 2.33, the shear stress gradient is

only about 25% of the right hand side of the x-momentum equation

(Equation 1.4). Thus only a weak dependence of the predictions on the

shear stress model is expected for this flow.

B.2 East and Hoxey Plane of Symmetry

The geometry of this flow (East and Hoxey 1969) closely resembles

a real wing-body junction as shown in Figure 1.2 (a). Since mean ve-

locity profiles were measured at many locations both on and off the

plane of symmetry, we computed (_) directly from the data. Indirect

wall shear stress measurements were made by East and Hoxey using a

Preston tube and a related technique using a razor blade to supplement

their mean profile data.

The results of integral parameters, shown in Figure 4.4, are in

good agreement with the data except for Cf which appears to be under-

predicted by all methods. This discrepancy in Cf may result from the

use of the Townsend form of the law of the wall (Equation 2.29) in the

prediction methods whereas the data points shown in Figure 4.4 were
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obtained from the experimental velocity profiles using a fit to the

conventional law of the wall, Equation 2.27. The Townsendform yields

a lower _ when 0f
w _y is high in the wall region. In fact, when the

flow was recomputed, using the Nash method, with the conventional law

of the wall, the computed Cf was in muchbetter agreementwith the

"law of the wall" data and the Preston tube estimates.

These difficulties with the data for Cf are further emphasized

if one considers flow separation, which is singular (_w = 0) at the

plane of symmetry. The evidence indicates that the flow separates at

about x = 0.666. At x = 0.666, Cf by the razor blade technique is

zero, the inner part of the measuredvelocity showsno forward velocity

and an examination of the oil flow photograph shows separation close to

this value of x. The predictions (using Equation 2.29) also show sep-

aration at about this value of x. However the Preston tube estimate

of Cf is non-zero at x = 0.666 and if one were to extrapolate Cf

determined from the conventional law of the wall (Equation 2.27) to
+

x = 0.666 it appears that Cf would be greater than zero. The

F Preston tube

First three data pointSa_ll [ 16 _

show zero forward _ 0 _ inches
velocity

I IIIIII /IIIIII/
+In fact, an examination of Equation 2.27 indicates that it cannot pre-

dict a zero wall shear stress unless the velocity at the first mesh

point is zero whereas with a high _/_y, Equation 2.29 can predict

zero wall shear stress with a finite velocity at the first mesh point.
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Preston tube however does not give a very reliable indication of the

wall shear stress since it responds to the flow some distance from the

wall.

The conclusion reached is that the predictions using the Townsend

form of the law of the wall (Equation 2.29) are more reliable than the

data points based on the conventional law of the wall (Equation 2.27)

or the Preston tube measurements.

This adverse pressure gradient flow develops even more rapidly

than the Johnston flow (x = 0 to separation in approximately 1.06995).

Again the choice of stress model is not critical so all the prediction

methods produce nearly identical results. A noticeable but small dif-

ference between methods is seen in the shape factor, H, results. The

eddy viscosity method gives a somewhat lower H near the end of the

flow (Figure 4.4). This effect appears to be a consequence of the

higher shear stress which this method predicts (Figure 4.5). The Nash

and Bradshaw methods give lower shear stress values because the shear

stress lags the equilibrium value due to the rapid flow development. The

higher shear stress of the eddy viscosity model prevents the fluid

layers near to the wall from decelerating as much as the Nash and Brad-

shaw models and produces as a result a "squarer" velocity profile

(lower H).

C. Infinite Swept Wing Flows

Infinite swept wing flows are described in cartesian coordinates

where x is measured along a chord and gradients in the z, or span-

wise, direction are zero. Since there is no spanwise pressure gradient,
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W the component of free stream velocity parallel to the leading edge

is everywhere constant. These flows are computed using Equations 1.8,

1.9 and I.i0 and the various shear stress model equations presented in

Chapter 2.

C.I Johnston Infinite Step

Johnston (1970) took some rather detailed measurements on the geom-

etry shown in Figure 4.6. The measurements were made on the floor Of

the wind tunnel in=nediately upstream of a long, forward-facing step

oriented 45 degrees to the tunnel centerline. The step produces an

extremely abrupt change in the flow field and in fact, the streamlines

are curved in the y direction so that the usual boundary layer approx-

imation of _P/_y = 0 is not valid. Fortunately, Johnston measured the

y profiles of static pressure in the flow at various values of x (Figure

4.7). Thus, in this special case, the prediction methods were modified

to take advantage Of this additional data and OP/_x replaced dP/dx

in the x-momentum equation (Equation 1.9). @P/_x calculated from the

data in Figure 4.7 was supplied as input to the prediction methods as a

function of x and y. Since Johnston measured turbulent shear

stresses as well as mean velocity profiles, an experimental shear stress

profile is used as well as an experimental velocity profile to start the

calculations for this flow.

The results of integral parameters for this flow are presented in

Figure 4.8. The parameters not used in the discussion of the plane of

symmetry flows, 812' _22' 62 and _w are defined in Chapter I. The

In practice infinite swept wing flow need not be over an airfoil hence

the use of the terminology of airfoil flow is purely illustrative.
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results of all the methods are almost the same and they agree quite well

with the data. Figure 4.9 shows the mean velocity profiles at x = 0.75

feet. No differences are apparent between the methods and the agreement

with the profile data is good. Johnston measured the pitch of the flow

so that experimental data is also available for the normal velocity V.

Predictions of this variable at x = 0.75 shown in Figure 4.10 are not

as good as the wall-parallel velocities. V depends entirely on the

accuracy of the local calculation of _U/_x since it can be evaluated

Y OU

from continuity (Equation 1.8) by V = /o (_x) dY" Thus, the results for

V indicate that the calculations are starting to deteriorate at x =

0.75. This may in part result from rapid change of pressure gradient in

a region, see Figure 4.7, where it is not accurately known.

The predicted and experimental shear stress profiles shown in Fig-

ure 4.11 for x = 0.75 are quite striking. The Nash and the Bradshaw

methods agree well with the data but the eddy viscosity model gives

shear stresses which are too high. This discrepancy is a consequence of

the lack of shear stress rate equation in the eddy viscosity model. In

the Johnston step flow, the turbulence field does not have time to de-

velop to an equilibrium state and therefore the equilibrium stresses

computed using an eddy viscosity method are too high. This high shear

stress of the eddy viscosity model has another significant effect - it

reduced the skewing of the flow so that separation (which is predicted

by Nash and Bradshaw methods to occur at x = 0.89 feet) never occurs.

The Nash and the Bradshaw methods predict a separation point in the

location where Johnston observed it experimentally.
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Another result of interest is the direction of the shear stress,

since assumptions concerning this direction constitute the difference

between the Nash and the Bradshaw methods. As can be seen in Figure

4.12, the Nash shear stress is approximately aligned with the mean ve-

locity gradient direction from the data and the Bradshaw shear stress

direction is closer to the shear stress data direction. + However, the

Bradshaw method does not correctly predict the shear stress direction

but appears to be at best only an improvement over the Nash method. It

should be emphasized that the Nash and Bradshaw methods produce virtu-

ally identical results for the mean velocities. This experiment was

especially designed to emphasize the difference between the direction

of the shear stress and the mean velocity gradient and since the dif-

ference in assumptions between the Nash and Bradshaw method makes no

difference in prediction of the mean flow it may well be that the iso-

tropic eddy viscosity assumption for shear stress direction, while not

generally valid, is quite adequate for many practical calculations.

C.2 Bradshaw and Terrell Swept Plate

The Bradshaw and Terrell flow (Bradshaw and Terrell 1969) is a

zero pressure gradient flow on a flat plate which is attached to the

trailing edge of an infinite swept wing. The fluid was air at atmo-

spheric pressure and temperature flowing at about 130 ft/sec. The flow

O

relaxes from a modestly skewed form (_w 8 at x = 0) toward a

simple, two-dimensional flat plate form. Shear stress profiles were

+The measurements of shear stress direction were quite difficult and

are recognized to be of relatively high uncertainty, e.g. the bars on

the points represent a significant fixed error. However, in the re-

gion close to y = 0.5" the uncertainty is not believed to exceed 2

degrees.
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taken in addition to mean velocity profiles at each measuring station.

Experimental shear stress and velocity profiles were used at x = 0 to

start the computations.

The results of integral parameters are shown in Figure 4.13. The

data shows scatter which is caused by the test arrangement where pro-

files were taken at various spanwise, z, positions. There was a

small variation of the flow conditions along the span. The points shown

by_ are directly downstream from the first point and do show somewhat

less scatter. The general agreement between predictions and data is

good (note that most of the plotting scales are quite expanded). In

both streamwise and crossflow parameters the differences between the

various methods appear to be no larger than the scatter of the data.

Figure 4.14 shows the mean velocity profiles at x = 1.18 feet.

Moderate differences are apparent in the crossflow velocity profile

predictions. However, considering the effect of a 0.5 degree measure-

ment error of the velocity direction on the data (see Figure 4.14), it

would be difficult to say which method produces best agreement to the

data.

Figure 4.15 shows the computed and experimental shear stress pro-

files at x = 1.18 feet. The agreement is not as good as expected.

In fact, when the eddy viscosity model was used to calculate a shear

stress from the experimental mean velocity profile at the x = 1.18

2

station, it produces values of _s/Q_ of 0.00095 and 0.00048 at y =

0.0416 and 0.08333 feet respectively compared to experimental values

of .00155 at y = 0.0416 and 0.00078 at y = 0.08333. These results

raise questions concerning the accuracy of these stress data. If the
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data are later demonstrated to be ± 10%uncertain, then a re-examination

of all shear stress models for two-dimensional flow is warranted.

In Figure 4.16 are plotted the shear stress and meanvelocity di-

rections for this flow at x = 1.18. The data does showa difference

between the directions of the shear stress and meanvelocity gradient

and this trend is also seen in profiles at other values of x. In the

inner parts of the layer, this difference is small but becomesapprecia-

ble near the edge of the boundary layer. Near the layer edge however,

the meanvelocity gradients and shear stresses are small and hence the

predicted and experiment directions have a high uncertainty. The Nash

and eddy viscosity methods predict shear stresses in the direction of

the meanvelocity gradient (by assumption) and are in acceptable agree-

ment with the experimental velocity gradient direction. The Bradshaw

method shear stress and meanvelocity gradient directions are different

from each other but in the inner part of the layer the trend is reversed

from the data. For y greater than 0.073 feet, the data and predic-

tions show the sametrends; however, the shear stresses are becoming

small and of little importance in the ultimate prediction of meanveloc-

ity profiles.

In summary, it appears that all the shear stress assumptions in-

cluding the eddy viscosity method tried on this flow produced results

which agree quite well with the meanvelocity data.

C.3 Cumpstyand HeadInfinite SweptWing

Cumpstyand Head (1970) measured the development of the boundary

layer in the adverse pressure gradient on the rear of a wing with a

sweepangle of 61.0 degrees (see Figure 1.2(b)). Free stream velocity

83



in the atmospheric temperature and pressure air flow was 133 ft/sec.

The experimenters experienced difficulty with flow interference effects

from their first traverse gear which caused the separation point to

moveabout but they finally minimized the problem by use of a slender

traverse gear. It is the latter data (slender gear) that is used here.

Only meanvelocity profiles were measuredin this flow.

The predicted results of integral parameters, shownin Figure

4.17, are in poor agreement with the data. The predictions of Cumpsty

and Head (1970), who used an integral method, and Bradshaw(1969),

whose basic method is the sameas ours but whose numerical method was

quite different are also in poor agreementwith each other and the

data. As mentioned in Chapter 3, Nash also got poor agreementwhen he

calculated this flow. The Cumpstyand Headand Bradshaw's own results

for _w_ are also shown in Figure 4.17. Nash does not present results

for _w but it is estimated from the velocity profile that his com-

putations gave values no more than 10%higher than the present work.

Thus, it appears either that the data is questionable or in someway

fails to meet the assumptions. The fact that the Cumpstyand Head

calculations do not agree with the present calculations is not surpris-

ing since he used a significantly different prediction method (an

integral method). That the Bradshaw's own results do not agree with

the present results is puzzling. It is surmized that he may have com-

puted the pressure gradient differently, and as is pointed out later

in discussion of the Gardow (1958) flows, accurate input for dP/dx

is essential in adverse pressure gradient cases.

In order to improve the predictions, the various authors have

tried different things. Bradshawobtained improvementby assuming a

84



surface curvature correction for the shear stress. Cumpstyand Head

modified the external velocity angle at the start and obtained an im-

provement. Nash, who has a program which allows variations in the z

direction improved his predictions by assuming a spanwise pressure

gradient. It is felt that the data from this flow is not complete

enough to adequately determine the difficulty and it is not felt that

corrections are really of muchmerit. What is demonstrated by this

flow is the need for a better infinite swept wing experiment. The

sweepangle selected (61°) is very high (it was governed by an avail-

able apparatus) and it is suggested that an experiment be performed

in the future on a wing with a sweepangle of about 45 degrees so that

the assumption of "infinite" span can be better approximated.

D. Vaneless Diffuser Flows

Two sets of three-dimensional turbulent boundary layer data were

obtained on a radial vaneless diffuser rig (see Figure 1.2d) in the

late 1950's. One of these was by Gardow (1958) and the other by Jansen

(1959). Gardow ran seven flows and took measurements on one wall of

the diffuser. Jansen ran three flows but took measurements on both

walls. Both authors measured only mean velocity profiles. In the

present work, calculations are presented for four of the Gardow flows

and one of the Jansen flows. In both cases the test fluid was air at

atmospheric temperature and pressure and the inlet free stream velocity

levels low (30 55 feet/sec).

Unfortunately, all of the vaneless diffuser flows were run at low

momentum thickness Reynolds numbers (Re) and most of the useful data

has R e under 2000. This fact complicates the numerical method and
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also extends the shear stress assumptions into a Reynolds numberregime

for which they were not originally developed.

The numerical difficulty arises because of the restriction that the

first meshpoint occur at a y+ = 30. At an R_ of I000, such a value

y+of
occurs at a Y/6995 of about 0.I, which is quite far from the

• and V I arewall This means that the empirical functions for _w' Bw

put to a severe test. In addition, since the second mesh point is much

closer to the first mesh point than the first mesh point is to the wall,

numerical instabilities appear. In his two-dimensional method, Bradshaw

doesn't use the restriction that the first mesh point fall in what is

experimentally observed to be the log-law region. Hence if y+ at the

first mesh point is less than 30, an artificially high velocity is com-

puted. Since the first mesh point is used to compute the wall shear

stress and the differential equations give a logarithmic solution in the

inner layer (all the way to the wall if allowed), the value of the wall

shear stress extracted from the computed log-law is the same. However,

it is not clear that an artificially high velocity value near the wall

will have no effect in a three-dimensional boundary layer. The higher

apparent inertia of the fluid may cause it to resist skewing and cause

errors in the estimation of the wall shear stress angle (see Chapter 2).

Thus, it was elected to always require that y+ = 30 at the first mesh

point and bear the resultant inaccuracies. It is possible that

allowing the first mesh point to be closer to the wall as was done in

the two-dimensional Bradshaw method would not have produced any greater

inaccuracies.
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The second problem at low Reynolds numbers, extension of the theory

to an untested regime, is well knownto the originators of the various

shear stress models. In his paper for the 1968 Stanford conference,

Bradshawnotes thau his method does not include the viscous shear

stresses which maybe as high as 10%of the total shear stress at an

R0 = 500. He notes that simply adding this effect into the calculations

is not necessarily meaningful because the empirical functions (L etc.)

may also change. Herring and Mellor (1968) also makenote of the low

Reynolds numberproblem and suggest a correction to their eddy viscosity

model. They suggest that the outer eddy viscosity be modified from the

usual form Equation 2.9b (Eouter = 0.01661Q_) to

eouter = 0.016 61Q_o + \R51

where

R6 = Q 61/v (4.13b)
i

In the present work, all of the vaneless diffuser flows have been com-

puted using the eddy viscosity model with and without this low Reynolds

number correction. For brevity, these methods have been denoted EVLR

and EV respectively.

Since the available vaneless diffuser flows indicated a significant

difference between results from the Bradshawand the EV predictions

(Nash is very similar to Bradshaw) it was considered to be of interest

here to try the mixing length model also. It was found that the mixing

length model produced essentially the sameresults as the eddy viscositT,

model for the infinite wing flows of Bradshawand Terrell and Cumpsty

and Head. In fact, the outer mixing length was adjusted for best
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agreement (_/6995 = 0.79) in these cases.

The data for the vaneless diffuser flows appears to be of appre-

ciably lower quality than the other experimental flows discussed so far.

Figure 4.18 showsa typical velocity profile by Gardowwhich shows the

scatter of the data points to be substantial. The difficulty is prob-

ably caused by the low velocity levels used in the vaneless diffuser

experiments. In none of the flows presented in his report does the

free stream velocity exceed 55 feet per second and the average velocity

level is closer to 35 feet per second. Such low velocities produced

low total to static pressure differences (0.2 - 0.4 inches of water

column) and high uncertainties in the resulting measuredvelocities.

The scatter in the velocity profiles led to concern about the accuracy

of the pressure gradient data. Minor errors in the measurementof the

pressure gradient were thought to have a major effect on the predic-

tions. As a result, a set of runs on each of the vaneless diffuser

flows was taken with the best estimate of the local pressure gradient

uniformly increased by 5%and uniformly decreased by 5%at each value

of x. The results of this study are presented after the presentation

of the predictions using our best estimate of the experimental pressure

gradient.

The Bradshawand the Nash methods require that a starting shear

stress profile be supplied. In all of the calculations for the vane-

less diffusers, the mixing length+ (see Chapter 2) has been used to

+The mixing length used for starting shear stress profiles has been
rounded slightly in the region where the two straight line portion of
the %(y) function intersect. This procedure eliminates a slight
spike in the starting shear stress profile.

88



generate a starting profile from the starting velocity profile. Sinc_

it is possible that the selection of a starting shear stress could

appreciably alter the calculations, a set of calculations were done

with the starting shear stress profiles arbitrarily altered by plus or

by minus 10%at all values of y.

The vaneless diffuser flows are denoted by the authors nameand a

numberwhich is the free stream swirl angle (_i) at the inlet to the

diffuser (see Figure 1.2(d)).

D.I GardowA-45.2 Vaneless Diffuser Flow

The predictions of integral parameters for this flow are presented

in Figure 4.19. At the last two values of x for which data is given,

the experimental boundary layer thicknesses are 0.991 and 1.008 inches -

values large compared to a passage half width of 1.000 inches. Assuming

that the unmeasuredboundary layer on the other diffuser wall is about

the samethickness, the inviscid core of the flow had disappeared. If

this is the case, the predictions at these last two points should not be

compared to the data.

The prediction methods produce a wide range of results in Figure

4.19 which completely span the range of data points. Rather surpris-

ingly, the mixing length model predicts this flow very well. The Nash

and Bradshawmethods give identical results as in previous cases.

The Nash, Bradshaw, and eddy viscosity methods all tend to over-

predict the crossflow. If one were to believe the data, this excessive

crossflow would indicate that these methods are predicting an average

shear stress across the layer which is too low. A low shear stress de-

creases the resistance to skewing. Mellor, in his correction for the
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low Reynolds numbers (Equation 4.13) increases the outer eddy viscosity

when his method is used at low Reynolds numbers. It is difficult to

demonstrate precisely how the different shear models modify the flow

since as the computations proceed, the meanvelocity profiles tend to

adjust so that the shear stress profiles for all methods are much the

same. This is demonstrated by Figure 4.20 which shows the shear stress

profiles at the start of the flow (x = 0.18 ft) and downstreamat x =

0.36 ft. Note particularly that the immensedifference between the EV

and EVLRshear profiles at x = 0.18 ft has almost completely disap-

peared at x = 0.36 ft. Of course, as Figure 4.19 shows, to achieve

this similarity of shear stress profiles, the velocity profiles have

different shapes as evidenced by the different values of H, the

streamwise shape factor. The important point is that the strong inter-

action between the meanflow and the shear stress makes it difficult to

pinpoint which characteristics of the shear stress models are respon-

sible for the differences in meanflow predictions.

A superficial evaluation of the predictions for this flow indicated

that the mixing length model does best, followed by the EV, EVLRand

Nash-Bradshawresults. The discussion in the paragraph above illus-

trates someof the difficulties of proceeding beyond this level of

evaluation.

D.2 GardowB-50.6 Vaneless Diffuser Flow

In this flow, the Nash, Bradshawand EVmethods indicate ordinary

separation well upstream of the last x station. The mixing length

and EVLRmethods provide greater resistance to skewing and predict

unseparated flow for the entire diffuser. The data show no evidence
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of separation anywhere. As in the GardowA-45.2 flow, the boundary

layer appears to fill the passage at the last two data points and thus

comparisons to data should not be madein this region. In general, it

appears that the mixing length and EVLR methods both predict the flo_

well. However, these predictions are very sensitive to the pressure

gradient as will be shown later.

The oscillations of Cf and _w near the start of the computa-

tions with the Nash and Bradshaw methods are a consequence of a numer-

ical instability in the wall region which results from an incompatibil-

ity of the initial conditions. In all the vaneless diffuser flows, the

irregular experimental velocity profiles (Figure 4.18) required us to

use synthetic starting velocity profiles. These synthetic profiles

were evidently somewhat different from those which the computational

methods required. With the shear lag of the Nash and Bradshaw methods,

the adjustment was somewhat unstable. The instability disappears how-

ever and is not thought to be significant in the prediction of the

downstream growth of the boundary layer. The eddy viscosity and mixing

length models, which do not use a rate equation for the shear stress,

remain stable.

D.3 Gardow B52.1Vaneless Diffuser Flow

The results of integral parameter for this flow are shown in

Figure 4.22. The mixing length results are not shown but are very

similar to the EV results. As in the Gardow B50.6 flow, the Nash,

Bradshaw and EV methods all predict ordinary separation. Again, the

data does not indicate separation. However, the data comes close to

separation (Sw + _ = 82°) and it may be that experimental errors mask
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actual separation. The boundary layer appears to fill the passage for

the last two data points. The EVLRmethod predictions comparewell to

the valid data points. If experimental separation does in fact occur,

then the Nash, Bradshawand EVmethods also perform fairly well since

they do not deviate drastically from the valid data.

D.4 GardowB-54.5 Vaneless Diffuser Flow

The results of integral parameters for this flow, shown in Figure

4.23 indicate that all methods predict separation very near to x =

0.3 ft, close to the start of computation. The experimental results

show a long region in which 8w ÷ _ is very close to 90 degrees and it

is probable that the experimental flow is actually separated. The mix-

ing length results are not shown, but are virtually the sameas the EV

results. The experimental boundary layer appears to fill the passage

for the last three values of x.

D.5 Jansen 47 Degree Vaneless Diffuser Flow

The results of the Jansen 47 degree flow are presented in Figure

4.24. Jansen did not present any tabulations of his data, only tracings

of his original plots which were then multilithed into a report. Thus,

there maybe a considerable loss of accuracy from the original results

to the results shownin Figure 4.24. The Nash and Bradshawmethod pre-

diction, which are virtually the same, agree quite well with all the

data except shape factor H. The EVLRmethod agrees even better with

the streamwise data but leads to serious underestimation of the cross-

flow parameters. The EV method gives somewhatpoorer agreement with the

data than the Nash and Bradshawmethods; it overestimates R_ and under-

estimates Cf. Considering the questionable quality of the data, it is

surprising that any of the methods agree well with the data.
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D.6 Variable Pressure Gradient Effects

It was suspected that the predicted results for the various methods

are very sensitive to the free stream pressure gradient. Therefore a

series of calculations on the vaneless diffuser flows were carried out

in which the pressure gradient was deliberately varied from the best

estimate. The pressure gradient was varied according to

dP dP
dx dx best

estimate

where a was taken as 1.05 for the 5%high pressure gradient calcula-

tion and 0.95 for the 5%low pressure gradient calculations. The re-

suits of these changes of dP/dx on the computedfree stream velocity,

for the GardowA-45.2 flow are shownin Figure 4.25. Note that over the

range of x considered, a 5%change in the pressure gradient produces

at most a 2%deviation in the computedvelocity. In Gardow's tests, the

uncertainty of the pressure transducer readings varied from ± .75%to

about + 1.5%. Other errors, such as fluctuating readings could have

increased this uncertainty significantly. While it is difficult to

guess what the actual uncertainty of the velocity readings were, the

± 5%changesof the pressure gradient do not produce changes in free

stream velocity which are outside the uncertainty of the data.

Figure 4.26 shows the effect of this variation on the best fit

pressure gradient on someof the integral parameters for the Gardow

A-45.2 flow. As can be seen, the effects are substantial. The 5%high

pressure gradient causes the prediction of separation and significantly

increases the crossflow parameter 812. The 5%low pressure gradient

on the other hand reduces the maximumReynolds numberby 16%and the
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maximumchange in Reynolds number (Refinal - Reinitial ) is reduced by

25%. These results make it difficult to draw strong conclusions about

the prediction methods for the vaneless diffuser flows since the real

pressure gradient is clearly not knownto sufficient precision.

The presentation of the results of the variation of the pressure

gradient on all the vaneless diffuser flows are summarizedin Table 4.1

which gives the most pertinent results. The pressure gradient was

varied for three of the methods, Bradshaw, EVand EVLRfor all of the

vaneless diffuser flows. For each flow the dimensionless separation

point location is listed at Xs/Xlast. In addition, values of Re, Cf

and _w are given. These values of R@,Cf and _w correspond to the
dP

last value of x if the flow does not separate when the 5%high _x is
dP

applied. If the flow separates with the 5%high _x these values R@,
dP

Cf and 8w obtain at the value of x where the 5%high _x calcula-
dP

tion separates. Comparison of the three d-_ cases for a given flow

shows clearly, because of the large differences obtained, the importance

of very accurate measurementor representation of the pressure gradient

in strong adverse pressure gradient flows.

D.7 Variable Initial Shear Stress Effects

Since none of the vaneless diffuser flows had measuredshear stress

profiles at the start, the Nash and Bradshawmethods, which require a

starting shear stress profile, were started using the mixing length

model. It was thus of interest to see how sensitive the calculations

were to this selection. The Bradshawcalculations for the vaneless dif-

fusers were all recomputedusing an initial shear stress distribution

which was uniformly changedby plus and minus 10%at each values of y.
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The results of these calculations are summarized in Table 4.2. For the

flows, in which separation is not predicted, GardowA-45.2 and Jansen

47 degrees, it is seen that the changes in the predicted results were

not significant. On the other hand, the separation points of the sep-

arating flows were significantly altered by the changes in shear stress

at the start. It is possible then, that in some flows the initial shear

stress distribution could make the difference between a prediction of

separation and no separation. It is thus concluded that knowledge of

the initial shear stress distribution is important in the prediction of

flows with very strong adverse pressure gradients.

D.8 Summaryof Vaneless Diffuser Flows

Whenthe effects of the uncertainty in the pressure gradient is

taken into account, it appears that all tested methods predict the flows

to within the uncertainty of the data. However, no method was signifi-

cantly superior in predictive ability. What is demonstrated is the need

for a better vaneless diffuser experiment in which the uncertainties in

the measured quantities can be reduced and the shear stresses measured

directly. This may necessitate using higher fluid velocities and higher

Reynolds numbers than were used by Gardow and Jansen. Although selec-

tion of "best" shear stress model cannot be made on the basis of the

vaneless diffuser calculations here, the fact that the different methods

produce such different results indicates that there may indeed be one

method which is preferable at the low Reynolds numbers studied here.

Much more precise low Reynolds number flow data than is today available

is required however to pinpoint the best method if one exists.
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E. Summary of Comparisons with Experiments

In summary, it appears that all closure assumptions tested here for

three-dimensional turbulent boundary layers gave predicted mean velocity

profiles within the accuracy of the data. Prediction of the shear

stress profiles was not so accurate. In the Johnston step flow, the

_ddy viscosity model failed to predict the shear stress magnitude accu-

rately while the Nash and Bradshaw methods were in good agreement with

the data. In this same flow, no method accurately predicted the direc-

tion of the shear stress, but the Bradshaw method was closer to the data

than either the Nash or eddy viscosity methods. In the Bradshaw and

Terrell flow, the only other flow in which shear stresses were measured,

no method was successful in accurately predicting the shear stress

magnitude. For this same flow when experimental uncertainty is consid-

ered, no method was significantly superior in predicting the magnitude

or the direction of the shear stress. Since in most engineering applica-

tions, it is the prediction of the mean velocity field which is impor-

tant, no fully rational basis is available for selection of the best of

the differential prediction schemes considered in this study. This is

not to say that one method is not preferable - just that a preference

cannot be distinguished on the basis of the present data. More experi-

ments are needed to fully differentiate the merits of the various pro-

posed methods. It should be kept in mind that the methods tried in the

present study all work well in two dimension at moderate (5-50 thousand)

momentum Reynolds numbers and thus their good performance in three dimen-

sion was considered an expected possibility.
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CHAPTER 5

CALCULATION OF IDEALIZED FLOWS

A. Introduction

Frequently it is of interest to perform predictions of the boundary

layer growth in configurations for which there is no data. Of course,

the ultimate purpose of any boundary layer prediction method is to pre-

dict and optimize the performance of fluid mechanical machines in the

design stage. With the extremely complex flow fields present in most

real devices however, insight into the actual fluid behavior is the most

that can be expected from present day boundary prediction methods. In

addition although the best method to evaluate the performance of a pre-

diction method is to compare its predictions to experimental data, pre-

dictions of purely theoretical flows can give insight into the relative

performance of prediction methods.

An example of purely theoretical predictions of three-dimensional

turbulent boundary layers is the work of Cumpsty and Head (1967). They

performed predictions using their integral entrainment method on a

series of idealized infinite swept wing flows with a variable sweep

angle (_i). We have also predicted the Cumpsty and Head swept wing

flows. In addition, we have performed calculations for a series of

vaneless diffuser flows with various inlet conditions.

B. Cumpsty and Head Infinite Swept Wing Demonstration Cases

Cumpsty and Head (1967) proposed a set of infinite wings in which

the free stream velocity over the rear (adverse pressure gradient

region) is given by
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Uoo= Qoocos _i(l - kx)

W = Q_ sin _i

where x is measured in the chordwise direction,

(5.1a)

(5.1b)

is the effective

sweep angle (Figure 1.2b) at the start of the adverse pressure gradient

and k is a constant determining the strength of the pressure gradient.

Both Bradshaw (1969) and Cumpsty and Head (1967) performed prediction

using a value of k of 0.25, the value that has been used in the pres-

ent work. The boundary layer was assumed to be collateral at the start

of the flow (x = O) and to have the parameters

ell i = 0.00234 feet

Q_ = 1.00 ft/sec (5.2a)

- - 2690 (5.2b)
Rell i

H. = 1.41 (5.2c)
i

Calculations were performed at values of _i of 0, 17.5, 35, and 52.5

degrees. Only the Bradshaw model and the eddy viscosity model (without)

the low Reynolds number correction) were tried in these calculations.

For brevity, only certain key characteristics of the results have been

presented.

In Figure 5.1 are presented the results for the position of the

separation point as a function of sweep angle. This figure shows that

there exists a difference between our predictions using Bradshaw's

method and the predictions made by Bradshaw himself. This difference

appears to be a consequence of the different methods of handling the

wall boundary conditions in flows with large crossflows. For two-dimensional

flows, our wall condition and that used by Bradshaw are very similar
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and consequently the two methods produce the sameresults for zero sweep

angle.

The Cumpstyand Head prediction has a rather different character

than the other predictions shown on Figure 5.1. For large sweepangles,

Cumpstyand Headpredict that the separation value of x will decrease

rather than increase with increasing sweep. The Cumpstyand Head re-

suits are, of course, an integral method and it is probable that they

are not as reliable as the differential methods, particularly near

separation.

Difficulty was encountered with the eddy viscosity model in pre-

dicting the separation point for zero sweepangle, which is a case of

singular separation (ordinary separation occurs for all other values of

sweepfor all methods). As mentioned in Chapter 4 in the section on the

East and Hoxey plane of symmetry flow, successful prediction of singular

separation using the Townsendform of law of the wall as part of the

wall conditions is dependent upon a high shear stress gradient between

the wall and the first meshpoint away from the wall. Without this

shear gradient effect, the conventional law of the wall (Equation 2.27)

predicts separation too far downstream. As separation is approached,

the velocity profile becomesinflected and the y gradient of velocity

(_Q/_y), near the wall is reduced. With its shear stress rate equa-

tion, the Bradshawmethod continues to predict a high shear stress at

the first meshpoint despite the decrease in y gradient of velocity.

Since the wall shear stress is dropping rapidly as separation is ap-

_r remains high On the other hand, with the eddy viscosity
proached, _-_

model the shear stress at the first meshpoint responds in_nediately to
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_--_ also drops. When this lowthe reduced cy and consequently, Oy

is used in Equation 2.29, a high value of _ results and prediction of
w

separation is delayed. Evidently, in the East and Hoxey Flow, the ad-

verse pressure gradient was so strong and the advent of separation so

sudden that this difficulty with the eddy viscosity model was not appar-

ent. In the Cumpsty and Head flow, using the eddy viscosity model, the

wall shear stress drops to a low value but never reaches zero. Since

singular separation was expected (based on the other prediction methods)

for the wing with zero sweep, the estimate of the separation point zero

sweep by the eddy viscosity model shown in Figure 5.1 was obtained by

extrapolating to zero wall shear stress values in the vicinity of x =

io0 feet.

Figure 5.2 gives some representative predictions of dependent vari-

ables at a value of x which is not near separation, x = 1.0 feet.

With the exception of the Cumpsty and Head predictions, all the methods

give close to the same results. By comparison, the large variations in

the results for separation location, Figure 5.1, probably results from

the different ways in which the various methods behave near separation.

Although the methods presented in Figure 5.1 do have the capability of

predicting separation, they were not designed using separating flows and

thus when the various parameters start to change rapidly with x as

separation is approached, they all behave in different ways.

C. Vaneless Diffuser Demonstration Cases

In an ideal inviscid flow, the streamlines in a parallel walled

radial vaneless diffuser (Figure l°2d) follows a logarithmic spiral, and

radial and tangential velocity components are given by:
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R.

U = U _ (5.3a)
_ R
i

and
R.

W = W _ (5.3b)
oo o0 R

i

Such a velocity variation would approximate that in the free-stream for

a vaneless diffuser where the spacing between the walls is very large

compared to the thickness of the boundary layers. This velocity dis-

tribution produces a swirl angle _ tan_iiW )i \, = which is constant with

radius. In actual diffusers, the boundary layers on the walls of the

diffuser grow rapidly with radius and cause an apparent convergence of

the diffuser walls which in turn causes the radial velocity component to

be larger at a given R than the value obtained from Equation 5.3a.

U , is in fact controlled by the displacement thickness parameter 6 r

6 = 61 + 6 tan _ (5.4)r 2

and the conservation of mass equation written in the form

q¢

Uoo = Q/[2_R(B - 26r ")_ (5.5)

where Q is the volume flowrate through the diffuser and B is the

distance between the parallel walls of the diffuser.

Calculations have been performed, using the eddy viscosity model

and the Bradshaw model on a series of vaneless diffuser flows having

simple logarithmic spiral streamlines with pressure distributions ob-

tained from Eulers equation and Equations 5.3 (note: effects of 6 r

q_

6 << B assumed)
r

are neglected or

dP

dr

U 2 +W 2
CO oo

i i

(R/Ri) 2Ri

(5.6)
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The initial conditions at x = 0 have been fixed as:

RGlli = 2000

H. = 1.50
1

and the flow assumed to be collateral. The only other significant in-

let parameter (as long as 8 >> B) is the ratio of the inlet boundary
r

layer thickness to the inlet radius. This parameter has been repre-

sented by Ri/ell i. Three values (500, i000 and 2500) for Ri/ell i

have been used in the computations.

It is worth noting that the flow situation being described here is

highly idealized compared to the flow which one would expect in a real

centrifugal blower or compressor. In real flows, the inlet to the dif-

fuser consists of alternate wakes and jets coming off the impeller

blades which makes the flow both unsteady and non-axisymmetric. In ad-

dition the inlet boundary layers would not necessarily be collateral.

The first computed result we shall examine is the separation point

location. Figures 5.3 and 5.4 show the separation point radius as a

function of swirl angle, _, for the Bradshaw and eddy viscosity

models. It can be seen that for the range of the parameter Ri/@ll i

examined, the flow always separates for all values of the swirl angle.

There is a significant effect of the parameter Ri/@ll i because the

pressure gradient computed by Equation 5.6 is inversely proportional to

the inlet radius. Computations have also been performed for an inlet

Reynolds number of 20,000 with

separation point was noted.

For any value of Ri/elli_

(5.7a)

(5.7b)

Ri/ell i = 500. No significant effect on

the flow separates at very small radius
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ratio, Rs/Ri, if the swirl angle is greater than about 70 degrees.

The swirl angle becomes large as surge is approached in centrifugal

compressors and it is possible that flow separation in the short vane-

less space just downstream of the impeller is a factor contributing to

the surge problem.

It is also of interest to examine the validity some of the assump-

tions used here as the separation condition is approached. For the

log-spiral streamline pressure gradient and thus the present calcula-

tions to be valid, the boundary layer must not fill the passage (there

must be an inviscid core) and the radial displacement thicknesses, 6r,

must be small compared to the distance between the diffuser walls, B.

In the present calculations, B, has been assumed to be infinite. In

Figures 5.5 and 5.6 are presented the results for 6995/R i versus

swirl angle at a point upstram of separation where R/R i = 0.9(Rs-Ri) R i.

This radius was selected to avoid the region very close to separation

where the calculations are uncertain due to numerical difficulties, but

close enough to Rs so that an idea of the value attained by 6995

when separation is imminent is obtained. Unfortunately, it was found

that the parameter 6995/Ri is very sensitive to the computed location

of the separation point, especially at small swirl angles. The error

band shown in Figures 5.5 and 5.6 represents the approximate variation

in 6995/R i caused by an error in prediction of the separation point

(Rs-Ri)/R i of ! 5%. It is thus difficult to draw the curves for this re-

sult and only the calculated points are shown. The general trend is

evident however. For example, for a diffuser with a radius to passage

width ratio at inlet of Ri/B = i0 and a swirl angle of 40 degrees, the
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boundary layer on each wall would fill about 30%of the passagewidth

as separation is approached. For the samediffuser with purely radial

flow, the boundary layers would have completely filled the passage by

separation.

5.7 and 5.8 present similar results for 6r/Ri. For theFigures

ratio Ri/B of i0 used in discussion above, the radial displacement

thickness 6 on each wall would be about 10%of the passagewidth atr

a swirl angle of 40° , enough to have a 20%effect on the free-stream

radial velocity component (Equation 5.5). The pr4ssure gradient would

thus be reduced from the value used in computation and consequently the
dP

tendency to separation slowed. The reduction of d-_ is even more pro-

nounced at lower swirl angle i.e. as _ _ 0 and it is probable that

for geometries of high Ri/B separation will never occur for low swirl

angles. High swirl angles are, however, the most commonsituation in

centrifugal compressor diffusers and in such cases the results given

here are probably more realistic.

A final result of someinterest obtained from these vaneless dif-

fuser studies concerns singular separation (at _ = 0). Sandborn (1970)

found that for a variety of experimental data, a correlation of integral

parameters produced a criterion for singular separation in two-dimensional

turbulent boundary layers. Sandborn's empirical criterion for singular

turbulent separation is that separation has occurred for values of H

greater than

H = 2.12 + 0.306 loglo ke (5.8a)

2 @U
811

k@= _ _x (5.8b)
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The location of singular separation in the present methods is the point

where a negative or zero value for the wall shear stress is predicted.

The predicted singular separation results for the vaneless diffuser

flows are shown in Figure 5.9 in terms of the correlating parameters H

and Re. The point for the Cumpsty and Head unswept wing (Section B of

this chapter) is also shown for the Bradshaw model. It is apparent that

if Sandborn's criterion is proper, H is underpredicted at separation

by all the present methods. The prediction of singular separation using

the eddy viscosity model is not considered very reliable due to the

difficulties discussed earlier.

D. Summary

Although it is not possible to use computer experiments of the type

presented in this chapter to certify prediction methods, the results

enable various predictors to compare their results and can also give

insight into the performance of fluid machines. The flows presented

here only represent simple examples of the potential for such calculation.
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CHAPTER _

SUMMARY

A. Summary of Conclusions

In the course of the present research program, a number of signi-

ficant conclusions have been reached:

I. All three shear stress closure models used in this study permit

prediction of the mean velocity field to within the accuracy of the

data. In addition, in flows with moderate Reynolds numbers (R e =

5000-50,000), all models produce results which are in good agreement

with each other. At lower Reynolds numbers, (R8 less than 2000) the

methods differ from each other to a greater extent and although it may

be that one model is preferable, a preference cannot be determined

with the available data.

2. There appears to be a large class of three-dimensional flows

that can be predicted with differential methods in which the choice of

shear stress closure assumption is not very important. This class in-

cludes the flow on a flat wall in the vicinity of wing-body junctions,

large bumps and other obstructions. In general, this class of flows

appears to encompass well developed nearly two-dimensional layers which

suddenly encounter very strong adverse pressure gradients.

_. Direct measurements of the shear stress are available in only

two experimental flows. Hence it is impossible to draw final conclusions

with regard to the prediction of shear stress magnitude and direction.

In one flow, the Johnston infinite step, the predictions of shear

stress magnitude using the Nash and Bradshaw mode]s were much better
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than the predictions using the present eddy viscosity model. The im-

provement due to the Nash and Bradshawmodels can be attributed to the

use of a rate equation to compute the shear stress magnitude. In this

same flow, all models predicted the shear stress direction poorly

although the prediction using the Bradshawmodel were closer to the

data. It should be noted that this flow was a very severe test of the

shear stress assumptions but at the same time a flow (see conclusion 2)

in which the shear stress model is not too important for the prediction

of the meanvelocity.

In the other flow where shear stresses were measured, the Bradshaw

and Terrell swept plate, the shear stress terms dominate the development

of the boundary layer, i.e. the pressure field is constant. No clear

advantage was shownby any of the closure models either in prediction of

the shear stress magnitude or direction.

_. It has been demonstrated in this study that the streamwise

development of boundary layers in strong adverse pressure gradients is

extremely sensitive to gradients of pressure imposedby the external

pressure field. Thus, if an experimental flow of this type is to be

useful for evaluation of prediction methods, the free stream pressure

gradient must be measuredwith extreme accuracy, preferably to better

than _i_. In the present study, an uncertainty in the pressure gradient

of _5_ was found, in a number of flows, to produce extremely wide

variations in the predicted growth of the boundary layer when the

adverse pressure gradient was strong.

5- In addition to the major conclusions above, a numberof lesser

conclusions were reached.
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an

ii.

iii.

iv

b.

With regard to the accuracy of the available data:

i. Due to the low velocities of the vane]ess diffuser

flows and the consequent low, and difficult to measure,

total to static pressures, the vanele_s diffuser flows

of Jansen and Gardow are of poorer quality than the

other flows considered here. More scatter is apparent

in the velocity profiles and the pressure gradients

have a higher uncertainty (see conclusion 2)

The Cumpsty and Head 61 ° swept wing flow probably does

not meet the assumption of infinite span.

Jansen does not provide tabulations of his data. This

oversight seriously limits the usefulness of this data

source.

The accuracy of the shear stress magnitude data for the

Bradshaw and Terrell flow is questioned. While it is

essentially a two-dimensional flat plate flow with re-

gard to the shear stress magnitude, the measured magni-

tude is 3©_ to 50_ too high compared to results pre-

dicted with the shear stress models. Back checking,

using the eddy viscosity model and the experimental

mean velocity profiles, the same discrepancy was found.

With regard to the numerical method:

i. At low Reynolds numbers, the numerical method works

poorly. The restriction that the first mesh point

in the y direction fall at a y+ greater than _

causes the first mesh point to be too far from the
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wall, often at a y/6995 of greater than

0.I.

ii. The form of law of the wall based on the assumption

that the shear stress is constant in the wall region

significantly overestimates the wall shear stress in

strong adverse pressure gradients. The Townsendform

of the law of the wall, which allows for a linear shear

stress variation in the wall region appears to have

significant advantages in this regard whenused as an

inner boundary condition for a differential prediction

method of the type used here.

B. Recommendations for Future Work

In the course of the present program, deficiencies in the available

data became apparent and, in addition, extensions of the present work

suggested themselves.

i. One class of three-dimensional turbulent flows for which data

are needed are those in a moderate Reynolds number range (5,000-50,000)

in which the development of the flow is governed by shear forces and

pressure gradient forces of about the same magnitude. The Cumpsty and

Head 61 degree infinite swept wing experiment is such a flow but appears

to not meet the assumption of infinite span. It is recommended that a

swept wing experiment with moderate sweep (about 45 °) be attempted and

that the pressure gradient be mild enough so that the flow develops for

an appreciable distance (20-50 boundary layer thicknesses) before

separation occurs.
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Since the predictions of the low Reynolds numbervaneless dif-

fusers showeda diversity of results, it is apparent that one or more

of the prediction methods is breaking down in the low Reynolds number

regime. Thus, a definitive low Reynolds number, adverse pressure

gradient experiment would be desirable.

2. It is recon_nendedthat in future developments of numerical

methods which can handle generalized geometries or solve complete flow

fields, that the simplest of the models tested here, the eddy viscosity

model, be used. It has demonstrated no serious deficiencies in computa-

tion of the meanvelocity field and would be the most efficient in terms

of computer time. Although not fully tested in the present program,

the mixing length model is also probably quite adequate. Either of

these methods work well in modern implicit numerical schemeswhich,

because of their larger x-step, shnuld be more economical with respect

to computer time.

C. Closure

It is hoped that the conclusions of the present work will give

other researchers in turbulent boundary layers confidence in available

three-dimensional turbulent boundary layer prediction schemes and en-

courage them to develop numerical schemes for the calculation of the

flow on generalized geometries and perhaps complete, three-dimensional

flow fields.
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APPENDIX A

THE COMPUTER PROGRAM

A general computer program has been prepared which will accept any

shear stress model considered in the present study. Nine different

decks have been produced however, three for infinite swept wings, three

for the Johnston Step flow and three for the plane of symmetry flows.

In each group of three, one uses the Bradshaw model, another the Nash

model and the third either the eddy viscosity or mixing length models.

Although the time required to change a program from one shear stress

model to another is not long (changes and debugging take less than a

day), different decks for each shear stress model was considered con-

venient. This appendix contains a description of the Bradshaw method

only. The differences in the other programs are not major and would be

readily apparent to an experienced programmer.

Table A.I contains a list of the variables used in the computer

program. Table A.2 is a list of input variables showing the input for-

mat and Table A.3 is some sample output. Table A.4 is a complete list-

ing of the Bradshaw model computer program.
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Table A.I Variables Used in Computer Program

This table gives the equivalence between variables used in the

computer program and the nomenclature used elsewhere in this report

which are shown in quotes " " As a general rule, the prefix D on a

computer program variable indicates differentiation with respect to x

and a last letter _ on a program variable name indicates differentia-

tion with respect to y. For example

DU = _U/_x

UP = _U/_y .

Most of the subscripted variables have the subscript varying in the

y direction and the first value (subscript = 1) is at the first mesh

point away from the wall. Subscripted variables which deviate from this

rule are noted in the list of variables.
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AVUTAU

BETA

BETAW

BETOLD

C

COSS

DBETDX

DELRAT

DELTA

DELTAX

DELTAZ

DPDR

DUTAU

DX

DXI

D995

EPS

H

HI

I

ITER

IUNIT

J

K

Table A-I (Cont'd) SIMPLEVARIABLES

Average value of "Q_ , (UTAU+ UTAUO)2.0

Value of "_" at first meshpoint

Angle of limiting wall streamline "_ "
W

V at first mesh point from previous x-step

"q0" in Equation 3.10

Cosine of "*", free-stream velocity angle

"_Yl/C_x", rate of change of Y1 with "x", Equation 2.36

"5 "/"6 "
995

Maximum "y" value of calculations at each x-step

"6 " displacement thicknessi '

H l!

62

"dP/dx", pressure gradient

. , see Equation 2.36

?I fl l! Jt

Ax , x increment

"x" increments where UINF and DUINF read in

IT It

6995 , boundary layer thickness

Eddy viscosity "E"

"H", shape factor

Inlet "H"

Index or counter

Number of iterations. Determine if Equation 3.2 or 3.3 used

Number of "x"-values where printout required

Index or Counter

NY+ 2
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KD995

KL

L

LX

ND

NIT

NPRINT

NU

NY

OMEGA

PA

PEPS

PHI 1

PI

PRNT

PSIO

QINFI

R

RI

RML

SINS

TAUM

TAUI

THETAX

THETAZ

Tangent of

Inlet "4",

Coles ' 7[

Table A-I (Cont'd)

Lower index of y in interval where 6995

= i, part of an obsolete procedure

Index or Counter

Number of UINF and DUINF values read in

DELRAT = 1.4 + O.I*ND, determines width of

Number of iterations, 1 or 2

Printout required every NPRINT x-step

"v" kinematic viscosity

"N", number of y-grid points

= 0.0, part of obsolete feature

Johnston's "A", Equation 1.21b

"BW"

swirl or sweep angle

= 1 in printout required, = 0 otherwise

",", free stream velocity direction

IT IT

Qoo ' free stream velocity magnitude

"R", radius of vaneless diffuser

"R" at starting "x"

"_", mixing length

sine of "_"

"T ", maximum shear stress in
max

"_" at first mesh point away from wall

"@II"' momentum thickness

IT TI

922

164

falls

y-grid

y direction



Table A-I (Cont'd)

THETXZ

THETZX

THETI

TW

T1

T2

UTAU

UTAUO

UTS

UVW

X

VWW

XI

XL

XI

YCON

YFIRST

YN

YSCALE

It_ f?

12

ff_ fl rl It|

ii at starting x

"_ " wall shear stress
w

Variable used in synthetic initial crossflow velocity profile

Variable used in synthetic initial crossflow velocity profile

"QT"' shear velocity

"Q_" at previous x-station

"U " square root of component of
TS

in streamwise direction,
w

Equation 3.14

"x"-component of wall shear stress

"x" coordinate direction

IT

z-component of wall shear stress

"x" at start of calculation

"x" at end of calculation

Value of "x" where first UINF and DUINF values given

"C" in Equation 3.10

Use in calculation of YCON

Number of y points

Scale factor of "y" in reading in starting velocity profiles.

Y = Y. * YSCALE
input
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ANGVEL

ANGVLN

ANGVLP

DU

DUINF

DUV

DVW

DW

GUV

GVW

Q

QN

QP

TAU

U

UU

UINF

UN

UP

US

UV

UVN

Table A-I (Cont'd)

SUBSCRI PTED VARIABLES +

Velocity angle = tan -I "W"/"U", ANGVEL(1) is wall value

New value of ANGVEL, used in interpolation, ANGVLN(1) is wall valu.

0(ANGVEL)/_Y, ANGVLP(1) is value at first mesh point

"Ou/_x"

"_Q/_x", array in x-direction

"_ x/_X"

"_z/aX"

"_w/_x"

•';GT ", part of diffusion term in Equation 2.19
x

-"Gr ", part of diffusion term in Equation 2.20
Z

"Q", velocity magnitude

"Q", new value used in interpolation

"_Q/_y"

"T", magnitude of shear stress

tTuff T! IT, x component of velocity

"U2", used in evaluating integral parameters

" " "x" di
Qoo ' free stream velocity, array in - rection

"U", new value, used to evaluate QN and ANGVLN

"_U/_y"

"U ", streamwise component of velocity
S

"T ", x-component of shear stress
X

Same as UV, new value used for VCXN

+Except as noted, all arrays are in y-direction and have their first

value at first mesh point away from wall.
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UVP

UVS

V

VCX

VCXN

VCY

VCYN

VW

VWN

VWP

VWS

W

WN

WP

WS

WU

W_#

XF

XPRINT

Y

Y¢

Y2

Y2N

Table A-I (Cont'd)

ft FT_ , streamwise component of shear stress
s

"V", velocity normal to wall

fl If

-r , same as UV except first value is wall value
x

Same as VCX, new value used for interpolation

YT ", same as VW except first value is wall value
z

Same as VCY, new value used for interpolation

rf IT

-r , z-component of shear stress
z

Same as VW, new value used for VCYN

z

"T "
c

'_d", z-component of velocity

'_", new value use for QN and ANGVLN

'_ ", streamwise component of velocity
s

'_4 "U , used in integral parameter evaluation

'_42'', used in integral parameter evaluation

Values of "x" where [FIN-F,DUINF read in

Values of "x" where printout desired

-y -

"y", old value used for interpolation

"y", same as Y except first value is wall value

Same as Y2, new value used for interpolation
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Table A.2 - Input Data Format

This table contains the format of the input cards to run the com-

puter program. The following are special notes concerning the use of

the program.

I. For infinite wing flows, the initial R should be assigned a value

of 1.0 E + 08 or larger.

2. For two dimensional flows, the initial values of PSI, BETAW and A

should be 0.0

3. The values of U and W on card i0 (and continuation cards) are in

an x'z'y coordinate system which is rotated about the y-axis an

angle PSI (4) relative to the x-axis.

y

Z _ _ -- _

/ PSI

X !

.

5.

Card 1

Card 2

All inputs of angles are in degrees.

The unit system used is not important but must be consistent, i.e.,

if NU is given in ft2/sec, velocities must be in ft/sec and dis-

tances in feet.

- column 2-80, A 79 letter title

Column i-i0 Initial x

ii-20 Final x

21-30 Initial free stream velocity

31-40 Initial shape factor, H
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Table A.2 (Cont'd)

41-50 Initial momentum thickness,

51-60 Initial shear velocity, Q_

61-70 Kinematic viscosity, v

@ii

Card 3 column i-i0 Radius at initial x

11-20 _ at initial x

21-30 Angular velocity (= 0)

31-40 Bw at initial x

41-50 Boundary layer thickness at x initial

51-60 'A' in Johnston triangular profile model

(Eq. 1.21b)

Card 4 - column i-i0

11-20

21-25

Value of x where first UINF, DUINF value given

Increment of x where UINF, DUINF given

Integer number of UINF, DUINF values

Card 5 7FI0.3 format UINF values

Use additional cards as required

Card 6 7FI0.3 format DUINF values

Use additional cards as required

Card 7 - column 1-2

3-4

5-6

7-8

9-10

11-12

Integer number y points

Integer x stations between printout

= Ol synthetic profile, = 00 experimental profiles

Number of specific x values where printout desired

Number of iterations (usually 2)

ND where DELTA/D995 = (1.4 + 0.1*ND)

Card 8 7FI0.3 format, values of x where printout desired

in increasing value, must be greater than x initial

Use additional cards as required (max. 20 x values)
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Card 9 column I-I0

Table A.2 (Cont'd)

YSCALE,normalizing value for
mental starting profiles

y in experi-

Card i0 - column I-i0 Y/YSCALE
]1-20 U/QINF

21-30 W/QINF

Use additional cards as required
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Table A.4 Bradshaw Model

Computer Program Listing

C THPEE DIMENSIONAL TURBULENT BOU_;DAPY LAYER PREDICTION USING THE 5.

C BP _DSHAW METHOD 6.

C THIS PROGRAM CAN BE USED TC PRFOICT THE GROWTH OF THE THREE-DIMENSIONAl. ?.

C TURBULENT BOUNDARY LAYERS IN ,INFINITE WINGS ' AND AXIALLY SYMMETRIC 8.

C RAOIAL VANELESS DIFFUSERS IF THE EXTERNAL PRESSURE FIELD IS KNOWN 9.

C THE INPUT DATA IS AS FOLLOWS LO.

C CARD I - CCLUMI_ 2-80,A 79 LETTER "ITLE 11.

C CARD 2- COLUMN I-I0 INITIAL X 12.

C II-20 FINAL X 13.

C 21-30 INITIAL FREE STREAM VELOCITY 14.

C 31-40 II'41TIAL SdAPE FACTOR H 15.

C 41-50 INITIAL M]MFNTUM THICKNESS THETII 16.
C 51-60 INITIAL SHEAR VELOCITY, UTAU 17.

C 61-70 KINEMATIC VISCOSITY, NU 18.

C CARD 3 - COLUMN 1-i0 RADIUS AT INITIAL X 19.

C 11-20 PSI #T INITIAL X 20.

C 21-30 AI'IGUIAR VELQCITY(=O.OI 21.

C 31-40 BETAW /_I INITIAL X 22.

C 41-50 R_UNI],ARY LAYER THICKNESS AT INITIAL X 23.

C 51-bO 'A' TIN JCHNSTC]N TRIANGULAR CROSSFLOW MODEL 24.

C CArD 4 - COLUMN 1-!0 VAIUE OF X WHERE FIRST UINF, DUINF VALUE GIVEN 25.

C II-2C ItCPEMENT _F × WHERE UINF, DUINF VALUES GIVEN 26.

C 21-25 II'ITECER NUMREF_ OF UINF, DUINF VALUES , MOVE TO 27.

C RIGHT SICE OF INTERVAL, E.G. 00013 28.

C CARD 5 PUNCH SUCCESSIVE UIr'IF VALUES IN COLUMNS I-I0,11-20,21-30, 2,1.

C 31-40141-50 _5 1-60,61-70 30.

C USE ADDITIONAL CAPOS A_ RE(jUIRED ._I.

C CARD 6 - PUNCH DUINF VALUES IN SAM] FORMAT AS UINF VALUES. USE 32.

C ADDITIGNAL CARDS AS RFQ!JlRED 33.

C CARl) 7 - COLUNIV I- 2 INTEGER NIJM!3ER OF Y POINTS 34.

C 3- 4 INTEGER NUMBER OF X-STATIONS BETWEEN PRINTOUT 35.

C 5- 6 =0 _ SYhTFETIC PPOFII. E, =00 EXPERIMENTAL 36.

C STARTING VELOCITY PRCFILE 37.

C 7- 8 NUMBER OF SPECIFIC X-STATIONS WHERE PRINTOUT 38.

C RECUIRE[_ 39.
C 9-I0 N_JMBFk [)F ITERATIONS, USUALLY 02 40.

C 11-12 NL),WFEPE L)EI TA/DC_q5=(1.4'_O.I*ND) 41.

C CAF'D 8 - SUCCESSIVE VALUES !qF X WHERE PRIHTQUT REQUIRFD IN INCREAS- 42.

C ING VALUE, MUST BE OR-FATE p THAN X INITIAL 4_.

C MAXIMUM 20 X VALU_:S 44.

C CARD 9 - COLUMN !-10 YSCAL[, I':]R_4ALIZING VALUE FOR Y IN EXPERIMEN'rAL 45.

C STARTINC, VFLF)CITY PI_NFILES. THIS AND SUCCESS- 46.

C IrE C/*RDq 14{IT REQUIRED WITH SYNTHETIC START 47.

C CARD 10 - COLUMN 1-10 Y/YSCALE 43.

C 11-20 t;/Q!NF 1 4'_.

C 21-30 W/QINF] 50.

C THE VALUES OF U ANF) W READ IN ARE !N A CQORDINATF SYSTEM ROTATED 5[.

C AB(qUT THE Y-AXIS RY PSI INITIAL RELATIVE TO THE X-AXIS 52.
C ON CARD tO IT IS AL$CI PQSSIRE TO farAD TAUX/QINFI**2 AND TAUZ/ 5].

C QINFI**2 IN COLUMNS 31-40 AI_!D 41-5n RESPECTIVELY. IF THIS IS DONE, 54.

C STATEMENT 22 MUST BE MFJVED ._] THAT IT IMMEDIATELY FOLL()WS STATEMENT 40 55.

C IN._TEAD OF BEING T_4F SFCCIND ST_![M[_T AFTER STATEMENT 21 50.

DIMENSION TITLE (20),Y (43 I ,[I (43) ,W(43},Q(43),QP(43), 57.

LUV| 43) ,VW(43) ,firs(43) ,VI_S(43) tlJS(43) _WS (43) ,WW(43)tWU(43), 5_.

2UU( 43 ) ,UP(4_ ) ,WP(43 ) ,VWP( 4 _ I ,lIVP ( 43l , y('t. (43) ,VN(43) ,DU( 4 3) , 5 ).
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INT

Y2(

Y2N

C INPUT T

1

4

798

797

5

6

C WRI

C_

q

3DW(43),DUVI431,DVW(43),UN(43) ,WN(43),UVN(431,VWN(431

4,V(43), QN(43))XPRINT(20),ANGVEI (44),ANGVLNI44I,ANGVLP(43) ,
5 GUV (43) ,GVW(43 I )TAU(43 I

6) XF (50))UINF( 50 ) ,DUIF, F(50) t Y_(Z_4} ,VCX(441 ,VCY(441

7)Y2N(45),VCXN(45),VCYN(451
EQU[VAIENCE(VCX(II,UVW) ,(VCX(2))UV(ll) )(VCY(li,VWWI )(VCY(2) tVW(Z| )

1)(Y2(2) ,Y(1 )),(Y2N(2),Y(_(I) ),(VCXN(2))UVN(I)|,(VCYN(2), VWN(ll)

REAL NU, NUOUT
EGER XST/_T) PRNT

1)=0.0

(I)=0.0

ITLE,GEOMETRY, INLET CONDITIONS AND RUN PARAMETERS

READ(5, 4) TITLF

PRNT=I

FORMAT( 20A4|

READ (5,5IX I , XL, QINF1,141,THETI,UTAU, NU,R I, PHI I,{3MEGA, ANGVLN(I)

[,DELTA ,PA

REAC (5,7c8)XI,DXI,LX

FORMAT(2FtO.3,I 5)
REAC(5, 5) (UIr'!F( I ), I=I,LX)

RFAC(5,5) (DUINF( I),I=I,LXI

XF( II=XI

DO 7Q7 I=2,LX

XF( I):XF(I-I)*DX[

I=OR MAT ( ?FIO .3 )

READ(5,6}NY,NPRINT, IT, IUNIT,NI T,ND

DELRAT= i .4+0. I'XFLOAT(ND)

IF(IUNIT.GT.O) READ(5,5)(XPRINT(1), I=[, IUNITI

FORMAT( 6121

TF OUT HEADINGS

WRI TE(6,R) TITLE

FORMAT(IHI, lqX,2OA4)

WRITE(6,gIRI,UTAU,ANGVLN(1),PHI I,QINFI,HI,THETI,NU

FORMAT( 19X,4gH BRADSWHAW 3D BOUNDARY LAYER PREDICTION

I/2PX,'INSIDE RADIUS =')FIO.3_2X,'INITIAL UTAU =' ,F IO.5/20X,

2'INITIAL BETAW =',FIO.6,2X,'SWIRL ANGLE =',F10.3/20X)

3'INLET VELF)CITY=')FIO.3,2X, tINLET H =',FIC. 3 /20X,

4' INLET THETA =',FRO.5,' NU',I2X,'=',FtO,7//)
DELTAX= Ht_TFET!

PHI I=PHit*3.14159/180.0
ANGVLN(1)=ANGVLN(ll W_3.I415Q/IRO.+PHI1

L,'fS=UTAU*SQRT(CQS(AKGVLI',(I)-PHI 1))

UTAUfI=UTAU

XSTAT=t

R=P I

C=O .3

K=NY+2

X=X I

OX=O,

DUT AU=O.

CBETDX=O.

C READ IN VELOCITY PROFILES

COS S=COS ( PH I 1 )

SIN S=SI N(PHI t )

60.

61.

62.

63.

66.

65.

66,

67.

68.
69.

70.

71,

72.

73.

74°

75.

76.

77.

78.

79,
80°

81.

82,

R3.
84.

85.

85.

97.

88.

89°
90.

92.

93.

94.
q5.

96.

97°

q8.

Qg.

tOO.
tOl.

102.

103.

104.

105.

106.

107.

108 •

109.

110.

Ill.

112.
113 •

It4.

ItS.
it6.

lit.

it8.

119.
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18

I7

IO

IF(IT.EQ.IIGG TO 20
READ(5,18) YSCALE
REAO(5,181(Y(1),UNI I),WN(I) fUV(1),VW(1)
FORMAT(5E10.3)
DO 17 I=1,2
UN(NY*II=UN(NY)
WN(NY+II=WN(NY)
UV(NY+I)--0.
VW(NY+II:0.
Y(NY*I )=Y(NY} *( Y(NY)-Y( NY-1) ) *FLOAT(I )
DO IO I:I,K
Y( I):Y(1)*YSCALE
UN(I I=UN(I )*QINFI
WN(II:WN(1)*QINFI

UV(II:-UV( I I*QINFI**2
VW(I )=-VW(I )*QI NF1"'2
ANGVLN!I*I):ATAN(WN(1)/UN(I I) *PHIl

UVN(II=UV(I)*COS(PHIII-VW(I I.SIN(PHIl)

VWN( I ):UV( I )*Sl N(PH I I)+VW( I )*COS(PH I I )

QN(I)=SQRT(UN(1)*m2+WN(I}*'2)

GO TO 22

C***_

C SYNTHETIC

C***_

C USF

20
C USF

PROFILES

,I=I,NY l

COLES LAW OF WALL-WAKE TO CCMPUTE INITIAL STREAMWISE VELOCITY PrK(lF

CALL SYNQP(FltTHETI,QINFltNY,NU,Y,US,UTS ,DELTA)

JOHNSTON TRIANGULAR MODEL TG COMPUTE INITIAL CROSSFLOW VELOCITY

PEPS=SIN( ANGVLN ( I )-PHI 1 )/COS( ANGVLN(I) -PHI I l

D(3 23 I=I•K
TI:PEPS*US(I)/US(NY)

T2=PA*( I .-US ( I )/US (NY I )

T I=AMIN l ( TI ,T2)

23 WS ( I )=TI*US(NY)

DO 21 I=I,K

QN( I):SQRT(US(1)**2÷WS(I)*'2)

21 ANGVLN(I+I):ATAN(WS(1)/US(1))+PHII

BETOLD=ANGVLN(2)

22 CCNTINUE

CALCULATE Y DERIVATIVES OF STAPTING PROFILES

QP(I )=((QN( II-_N(2) |/ALDG(YII)IY{ 2) I IlY(1)

ANGVLP( I ):DER IV (ANGVLN, Y2,2 )

DO 2g I=2,NY

IF((Y(1)*UTAL/NU).GT.200) GC TO 28

QP( I)=((QN( I-I|-QN(I+I))/ALOG(Y(I-II/Y(I+II )I/Y(1)

GO TO 30

28 QPJ I)=DERIV(QNtYtl)

30 ANGVLP( I )=DER IV (ANGVt N, Y2t I+!)

2 c CONTINUE

C CAI CULATE

31

33

INITIAL SHEAR STRFSS PROFILES USING A MIXING LENG"H

DO 31 I=I,NY

UP( I)=QP(I)*COS(ANGVLN(I÷I))-QN(1)*SIN(ANGVLNiI+I))=ANGVLP(II

WP ( I ) =QP ( I ) *S IN( ANGVLN ( I*l ) )*QN ( I )*COS( ANGVLN( I ÷I } ) *ANG VLP( I )

NUOUT:O. OI6*QN( NYI*DE LTAX

INNER:]

RML:O.

DO 40 I=I,NY
RML=AMAXI(_ML,F:LORU(Y(I )/DELTAI'_DEL TA)

I F(RML/DELTA .GT ..07q) RML=. 07q.DE( TA

EPS:(RML**2)*SC_RT(UP(1)*=2+WP(1)**2 l

UVN(1)=-UP( I)*EPS
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VWN(I ) :-WP(I )*EPS
40 COIk,TINUE

DO 35 I =I ,2

UVN( NY+ I ) :0.0

35 VWN(NY÷I )=0.0
VCXN(LI=-UTAUW'_2=COS(ANGVLN(1))

VCYN (1 )=-UT AU *_'2"S IN( ANGVLN { i ) !

DPDR=DPDRFIXtUINF,DUINF,XFvLX)

D095=DELTA

C START REPEATING PART CF CALCULATIONS.(ALL PREVIOUS STATEMENTS

C COI'TCERNED INPUT OR INITIALIZATION

44 CCNTINUE

IF( |XSTAT/NPRINT)W_NPRINT-XSTAT.EQ.O| PRNT=I

C FINO DQ95

DO 50[ I=I,K

KDggS= I- I

IF(ABSII.O-CN(ID/QN(KI).LE.O.O05! GO TO 511

501 CONTINUE

511 DQOS=y( K0995 )÷I Y (KD995÷I)-Y IKDQg5 ) )'_(O. 995*QN(K )-QN (KDO g5) ) /

I (QN{ KD9_5+I |-CN(KDO95 ) )

OELTA=DQg5*DEE RAT

C ESTIMATE COLES Pl

PI=O.Z*(QN(NYI/UTAU-|2.5*ALOG(Dg95_'UTAU/NU)+5.| I

C ESTIMATE THE X GRADIENT OF UTAU

IF(DX/Dg95.GT.O.O(]1)DUTAU=( (UTAU-UTAUO|/DX+DUTAU)/2.

C ESTIMATE THE X GRADIENT OF THE VELOCITY DIRECTION AT THE FIRST

C MESH POINT

IF (I]X/ Dgg5. GT .0.001 ) CIVET DX= ( ( ANGVLN ( 2 )-BETOLD |/DX÷DBE TF)X) /2.0

C SE "r Y GRID AND INTERPOLATE VALUES

C .,_. w,
CPUT OLD Y IN OLD Y STORE

00 75 I =I , K

C SUBTRACT VELOCITY COMPUTED E_Y LAW OF WALL WAKE FRO_ _ PROFILE

C FOP INTERPOLATICN

QN(I)=QN(1)-UWAKEIY(1),UTAU,PI,DQq5,NU)

75 YO( I )=Y ( I |

C SE T Y GRID

YN= FLOAT (NY)

YFIRST=DELTAX'(C/YN÷ (I .-C)*( I./YN I*'2 )

AVUTAU= O. 5x,(U TAU+UTAUO l

YC(_N=30.*NU/AVUTAU -YFIRST

DO i00 I=I,K

I00 Y (I) =OELT A* { CX'FLOAT (I)/YN÷( I- -C )_'(FLOAT ( I |/YN)_*2) ÷YCON

C IN rERPOLATF TO FINn VALUES CF U ETC. ON NEW Y GRID

M=]

DO 110 I=I,K

DO 86 J=I,K

L=J

IFIY(1).LT.YC(J)) C_O TO LOI

86 CONT INU E

I01 L=L-I

87 CALL INTIY( I ),Q( I ) ,YO,QN,K ,L, 2|

C ADD BACK VALUE CF VELCCITY CcMPUTEO BY LAW OF WALL WAKE AFTER

C INTERPOLATTON

88

Q(I )=Q(1)+UWAKE(Y(I ),UTAU,PI,DOqS,NU|

CAI L INTIY( I),UV(I| ,YZN,VCXI_,,K+I,L+I,2|

CALL INT(Y(1),VW(1),Y2N,VCYr_,K+I,L_I,2I

CALL INT(Y(1),ANGVFL(I*I),¥2N,ANGVLN,K+I,L+[,2I

HI| |=Q(II*CCS(ANGVEL(I*I))
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W(I )=Q( I )*S IN(ANGVEL( I+l} )
I10 CCNTINUE

UTAUO=UTAU
BETOLD=ANGVEL(2 |
DO 206 ITER=I_NIT

C CALCULATEMAXIMUMSFEA[RSTPFSS
CALL MAXSHR(K,UV,VW_TAU,TAUM)

C***_
CPRE{')ICTIONOF U,W ETC. AT FIPST MESH

C ***_

POINT

CALL GFCALC(UV,VW,Q(I_IYI,K,Y,Dqc)5,GUV,GVW,TAUM)

C CALCULATE SHEAR STRESS GRADIENTS AT FIRST MESH POINT

TAU I=TAU{ I)

UTAU=WSF(Q(1),Y(I ), TAUItUTAU,r'U)

C FIrID BFTAW BY TAYLOR SFRIES EX"_APOLATICN FROM OUTER POINTS

ANGVEL(1)=A_GVEL(2)-Y(1)*(ANGVEL(3)-ANGVEL(2)I/(Y(2)-Y(I))

I+0.5*(Y(I}**2)'_((AhGVEL(4)-ANGVEt (3)|/(Y(3)-Y(2))-{ANGVEL(3|-

2ANGVEL| 2))/(Y(2)-Y(I) ))/(0. _*(Y(3)-Y| I) ))

TW=UTAU'_*2

UVW=-TW*COS(ANGVEL(I))

VI_W=-TW*SIN(A_,GVEL(1))

UVP(I|=DERIV(VCX,Y2,2)

VWP (I) =DER IV |VCY,Y?,2 )

DO 144 I=I,K

IF(UV{ I).GT.O.}VW(1)=O.

IF(UV(1).GT.O.J UV( I )--0.

C SUBTRACT LAW OF WALL V[LOCITY FROM Q FOR DIFFERENTIATION

144 Q(1)=Q(I)-UTAU*(2.5*ALOG(Y(II*tlTAU/NU)+5.)

C CALCULATE VELOCITY GPA[ IED,TS AT FIRST MESH POINT

QP(1)=!Q(2)-_Q( I))/(Y(2)-Y(i)) +2.5*UTAU/Y(I)

ANGVLP(I |=DERIV(ANGVFL,Y2,2)

C CALCULATE Y DERIVATIVFS OF L,W,UV,VW: NAMELY UP,WP,UVP, AND VWP

]45 DO 148 I=2,_Y

ANGVLP(I |=DERIV(AD, GVEL*Y2,1+I 1

UVP{ I)=DERIV(UV,Y,I )

VWP(I }=DERIV(VWrY,I |

148 QP( I )=DER IV(Q,Y, I )÷2.5*UTAU/Y( ! )

DO 14o I=l,K

140 Q( I |=Q( I )÷UTAUX'( 2. _A LOG(Y( I )*UTAU/NU) +5-|

DO 150 I=I,NY

UP( I ) =QP (I ) *COS( ANGVEL ( I+I ) I-Q( I ) tS IN( ANGVE L ( I+l I )*ANGVLP ( I l

WP( I )=QP ( I )*S I_( ANGVFL (I+L) )÷Q( I )*C OS (ANGVFL ( I+ I) )* ANGVLP( I )

150 CONTINUE

F ES'rIMATE NORMAL VELOCITY V AT FIRST MESH POINT

V(II=-COS(ANGVEL(2))*(4CS.*KU*DUTAU/UTAU+298-*NU/RI

I *S I N ( ANGV EL ( 2 ) ) w'DBETDX'W2Q6 • 5*NU

CALL VCALC(NY,U,WtV_Y,RtDPDR,UVP,(3MEGA)
OCCUREDC FORCE PRINTOUT IF ORDIr_APY SFPARATIOfJ HAS

IF ( ABS( ANGVEL(I ) ) .GT. I. 5703 ) PRNT=I

IFIITFR.GT.I) GO TO 111

IF(PRNT.NE.I) GC TO Ill

C***_

C CALCULATION OF INTEGRAL PARAMETERS

C CALCULATE THE STREAMWISF AND CRO._SFLOW

PSIO=ANGVEL (NY+ I)

BETA=ANGVEL (2)-ANGV EL (NY+I)

BETAW=aNGVE L [I )

COS S=CnS (PS TO |

COMPONENTS OF VELOCITY
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SINS:SINIPSIO)

DO 50 I:I,K
UVS(1):UV(I I*C(ISS+VW(1)*SINS

V,4S( I):-UV(1)*SINS+VW(1)*COSS

US(II=U(I|*CCSS¢WII I,SINS

WS! II=-U(II*SINS+W(II*COSS

WUI I)=IJS| I I*WS([)

WW( I ):WS( I )*.2

UU( |)=US(It**2

5O CONTI NLIE

C CALCULATE THE PARAMETERS

KL=I

DEL TAX=DXF ( NYtUS, Y, LTAU,KL, BETA tQ,NUI

100 THETAX=THXF { KY, UU,Y t UTAU,KL, BETAt DEL TAX,US, Q,NU )

DEt TAZ= BZF (NY, WS, Y,UTAU tKL ,E_FTA,US, Q, NU |

THETAZ= THZF(NY, WW _Y tUTAUt KL t BETAt USt Q tNU)

THFTZX= THZXF ( NY ,WU,Y _UTAU tKLt BETAt LJS, Q_ NU )

THFTXZ=DELTAZ-THETZ X

H=DELTAX/THETAX

C *wwx,_

C PRINTOUT RESULTS

CALL SPP I NT (lJS tWS ,UVS t VWS t NY, DELTA, D (_95,DELTA X, THE TAX t

IDELTAZtTHETAZtTHETZXtTHFTXZtHtBETAW,XSTAT,Rt IUNITtVtYtLITAUtPSIO

2tXtNU)

IF(aBS(ANGVEL(1)I.GT.I.5703) GO TO I

IF(X.GE.XLI GO TO I

66 PP NT :0

[11 CONTINUE

C CA| CtILATE TEE XSTEP

IF(ITER._Q.2) GO TO 61

DX=XSTEP{NY,V tU,TAU,Y,TAUM, Oqg5t ANGVEL( II |

IF(TW/TAUM. LT.. i) DX=DX/5.

C MODIFY DX IF A DESIRED X PRINTOUT STATION OCCURS IN NEXT DX INTERVAL

IF(IUNIT.EQ.O) GO TC 61

F)O 118 I=I,IUNIT

IF(X÷DX.LT.XPRINT(1)) GO TO 11P

DX=XPRINT(1)-X

XPRINT( I)=?.*XL

PRNT=I

I18 CONTINUE

61 CONT INIJE
C CALCULATE X DERIVATIVES flF UtWtUVtVW: NAMELY DUtDW,DUVtDVW

DO 200 I =ItNY

DU( I ):DUF( I ,DPDRtR,UVPth,VtUP,UtOMEGA)

DW( I):DWF(ItR,VWPtWtVtWPtUtE_AEC, A)

DUV(I)=DUVF(I,D_q5tuvtuvPtUtUPtGUVtVtYtTAUtTAUM)

OVW( I)=DVWF{ ItF)gqstvwtvwPvUtWP,GVWtVtYtTAUtTAUM|

200 CONTINUE

IF(ITER.EQ.2) GO Ttl 300

DO 205 I=ItNY

UN( I):UI I|

WN( |)=WIll

UVN(II=UV(I|

VW_2( I |=VW( I )

C ESTIMATE VALUES OF U,W,UV,VW AT MIDDLE OF DX INTERVAL

U(II=U(II+DU(1)*DX/2.

WII ):W(II+DW(I|*DX/2.

Q( I ):SQRT( U( I )**2+W(I )*'2)

ANGVEL( I+I)=ATAN|W{ I)/U(I|)
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UVII}:UV(II*DUV(II*DX/2.
205 VW( I ):VW( I )*OVW ( I )*DX/2.

DO 206 I:I,2

U(NY÷ I ] :U(NY )

Q(NY+ I ) :QINY |

ANGVEL{NY÷I+II:ANGVEL INY+II

204 W(hY÷I)=W(NY)

DPDR:DPBRF(X*DX/2., U INF tDUINF, XF,I X)

206 CONTINUE

C CALCULATE UtW,UV,VWI AT NEW XSTATION

C EXTRAPOLATE UtW_UV_VN TO X+DX

300 DO 240 I=I,NY

UN( II=UN(II*DX*DU(I )

WN( I )=WN( I )÷DX*OW( I )

CN( I}=SQRTIUN( I }**2+WN(I}W"w2}

ANGVLN(I÷l) :ATANIWN(1)/UN(1) }

UVN(I}:UVN(I}÷DX*DUV(I)

VW_:(I)=VWN(1)*DX*DVW(I)

240 CONTINUE

DPDR :DPDRF (X*OX, U INF, DU INF,XFt LX )

TAU [=SQRT( UVN( i )*'_2÷VWN ( 1 |*'2)

UTAU :WSF(QN(I) ,Y(IItTAUItUTAUtNUI

ANGVLN(I)=ANGYLN(2|-Y(1)*IANGVLN(31-ANGVLN(2) I/(Y(2I-Y(I) )

I÷O.5*(Y(1)**2):_I(AIIGVLNI4)-ANGVLN(3|)/(YI_)-YI2I)-(ANGVLN(3)-

2ANGVLN(2})/(Y(2}-Y(I})}/(O.F*(Y(3)-Y|I))}

VCXN( 1 }=-UTAU*_'2*COS! ANGVLh ( I ) )

VCYN(1):-UTaU_=2*SIN(ANGVLN(L)}

763 DO 460 I=l,2

UN(NY+I I=UNINY)
WN|NY+I }=WN(NY)

QN(NY+I )=QN (NY)

ANC, VLN(I*I*NY)=ANGVLN(NY÷I)

UVN(NY÷I I=O.C

460 VWN(NY+I )=0.0

XSTAT=XSTAT*!

IF(X.GE.XL) PRNT= 1

X=XeDX
R:R 4DX

IF(C.LE.O.31) GU TC 600

C=O. 3

GO TO 60t
_00 C:O .45

601 CONTINUE

GO TO 44

RETURN
END

FUNCTION DPORF (XtUI NFt DO INFt XFILX )

THTS SUBROUTINE COMPUT[!S-UINF_DUINF FROM INPUT VALUES
DIMENSION UINF( 50),DUINF( 50),XF( SOl

CALL INT(XtUt XF_UINF_ LXtO,2 }
CALL INT ( X, CUt XFt DU II';l: y L X t Ot 2)

DPDR F=-U*DU

RETURN

END
SUBROUTINE SPRINT( US,VIS_UVS mVWS _NY_DELTAtD995 ,DELTAX,TFETAX

C THIS SUBROUTINE PRINTS OUT RESULTS

tDEI TAZ, THFT_Z tTHE TZXt THETXZt H tBETA,XSTAT tR, IUNITtV, Y_UTAUtPSIO

2,X,VISC)

DIMENSION US( 231tWS( 23),UVS( 23},VWS! 23),V( 23)tY( 23)tYP( 43},

! UX( 4_,),NX( 43),VX( 43)_UVX( 43|gVWX( 43)tYX( 43}
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20

30

4O

5O

FORMAT( '

I' THETAX

2' THETZX

3' BETA

4/' QINF

K=NY+2

RTHETA=THETAX*US (NY I/Vl SC

INTEGER XSTAT

CF=2.0*(UTAU/US(NY))**2

PSIOP=PSIO*I80./3.[4159

PS IOP=PS 10*180./3.14! 5o

BETAP=( BETA-PSI 0)*180./3.14 159

WRITE(6,20) XSTAT,R fX

FORMAT(2OHIRESULTS AT XSTATION, 14,qH WITH R =, FIO.2,' X =',FIO.4)

WRITEI6t30I 0095, DELTA, DELTAX, THETAX _DE LTAZ ,THE TAZ, THET ZX, THETX Z'

i Ht BETAP, PS IOP,UTAU, US (NY) ,RTHE'rA, CF

ogq5 :' ,FIO.6,' DELTA =' ,FIO.6,'

='tFiO.6,' OELTAZ

=',FIO.6,' THETXZ

=',FIO. 3,' PSI

=',FIO.3t' RTHETA

USQ=US(K)**2

DO 40 I=I,NY

YP( If=Y(, )*UTAU/VISC

YX( I )=Y( I )/cqq5

VX( I ):V( I )/US(K)

UVX(1)=UVS(1)/USQ

VWX( I )=VWS( I )/USQ

WX(1)=WS(I)/US(K)

UX( I )=US( I )/bS(K)

WRITE(6t50)

FORMAT(' Y /Cgq5

I,' Y ','

DELTAX ='tFtO.6/

=' ,FIO.6,' THE TAZ =',FIO. 6/

=' tFlO.6t' H =',FIO. 4/

=' ,FIO.3,' UTAU =',FIO.4

=',FRO.2,' CF =' tF10.5//)

UIQI NF WIQINF V/QINF UV/QI SQ VW/Q I SQ'

Y÷')

WRITE (6,60) (YX( I I ,UX( I )tWX( I ),VX( I ),UVX( I |, VWXI I ) tY( I Iv YP( I ) ,

II=I,NY)

60 FORMAT (7F9.5, F(_. I )

C C{)MPUTE _AOMENTUM INTEGRAL BALANCE IN X DIRECTION

C=COS(PS I0)

S=SIN(PSIO)

U [hF=US (NY)

IF(XSTAT.GT.II GO TO 80

S I0= ( UI NF_*2) =( -THE TA X_(£*'2-2. x_THET Z X*Cw_S÷THET A Zx'S* _'2÷DELTA Z_'C*5 )

S20=(UINF*X_2)*(-THFTAX_(C*_2-S_*2)-4._THETZX*C_'S÷(S_2-C**2)*

[THE TAZ÷DELTAZ*C* S+F) E LTAX_ S_''2 )/R

ST2=O.

ST3=O.

RH5=O.

X(]=X

S30=-U I NFW'C

S40=UINF*(C*DELTAX+S_F)I LTAZ)

$50=-0.5_(L_ INF*_2 )*(CF*COS(BETA) )

80 CONTINUE

SI = (U I NF*_'2 )*( -THE TA X=CX_X_2- 2. *THETZ X-C* S÷THE TA Z= S=_2÷DE LTA Z*C'_ 5 |

52 = (UI NF=*2 )• (-TFETAX _ (Cw_2-S*'2)-4. *T HET Z X_C'k 5÷ (5 W_*2- £'_W_2 )X_

ITHFTAZ÷DELTAZ_C_S÷DELTAX_S_X'2)/R

S T2=ST2+O • 5, ($2 ÷S21] )*(X-XO)

53 =-UI NF'xC

$5 =-0.Sxz(UINF'_*2)=(CF*C{IS(BETA))

SG =UI NF= (C _DE LTAX+S'_DFLT AZ )

ST3=ST3*0.5*( $4÷$4_)*($3-510)

XLHS= ( S1-$1C I *ST2 ÷ST3
R HS =O. 5.( $5÷ $5(3 ) wx( X-XOI _-RH5

$20=$2
$30=$3

$40=$4
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S50=$5
XO=X
WRITE(6,gO)XLHStRHS

90 FORMAT| ' MOMENTUM INTEGRAL CHECK'/' LHS=' ,F14.3,' RHS:' _E14.3)

IF(H.GT.3.0} STOP

RETURN

END

FUNCTION XSTEP(NY ,V,U,TAUtY ,TAUM_Dq95 ,PSI I |

C THIS SUBROUTINE ESTIMATES X-STEP FPOM CHARACTERISTICS

DIMENSION V(23 ),U( 23),TAU( 23),Y( 23)

TANC=O. 0

Or] 20 I:I,NY

B=O. 15mTAUM*GORO( Y(1) /B995) /U(NY)

20 TANC=AMAXl (TANC, ABS ( (V( I I*B+(B_X'2*O.3mTAUI I I )*_0.5l IUII l I )

XSTEP=AMINI (YIII,Y(2)-Y(I))_I./TANC

RETURN

END

FUNCTION DZF(NY,WS,Y,UTAU,K[ ,BETAtUStQ,VISC)

C THIS CCMPUTES DELTA2

DIMENSION WS(100) ,Y(IOO),US(IOO),Q(IO0)

A=S IN(RETA)_(Y(KL)'_(Q(KL)-2.5*UTAU)-33. 5mVl SCI/USINY)

B=A I NTEG ( _iS ,Y ,K[, NY I/US (NY*2)

OZF=A_-B

RETURN

END

FUNCT I()N THZXF( NY,WU, Y,UTAU,KL, BETA,US, Q, V) SC)

C THIS COMPUTE THETA?I

DIMENSIOn1 WU(100),Y(100),US(100),Q(100)

A:((UTAUW_2.5*Y(KL)X:(O.a*Q(KL)_'2/UTAU-2.0_Q(KL) *2 .O mUTAUm2. 5 )-

1420.=UTAU*VISC}/Q(_IY)m*?)=(COS(BETA)X_SIN(BFTA)|

B=A I NTEG (WtJ ,Y ,KL, IkY )/US ( NY * 2 )*'*2

THZ XF=A ÷B

RETURN

END
FUNCTION THZF (l'iY, WW, Y ,UTAU, KL , B FTA, US, Q t V I SC)

C TH.IS COMPUTES T_-ETA22

P,IMENSION WW(100),Y( 100),US(IOO)tQ(IOOl

A--((UTAUW_2.5*YiKLIw_(O.4X'Q(KL)_'_2/UTAU-2.0_QIKL)÷Z.O_UTAUm2"SI-

Iz,20._UTAUX'VISC)/Q(_IYI*_Z)xx(SIN(BETA))_m2

B=AI NTEG (WW,Y,KL, NY )/US (NY÷2) *_2

THZF=A÷B

RETURN

END
FUNCT I_-]N WSF( U, Y, TAUI tUTAU,NU)

C THTS Ct?MPUTES QTAU,TI-E MAGNITUDE OF THE SHEAR VELOCITY

REAL NU

UTAUN=UTAU

5 F=I.-(UTAUN'_*2/TAUI ) _0.25
R =U_2.5,( UTAUNX, (ALOG I yx, UTAUN/NU ) .2. ) +2.0_( TAUt I _x'O .5*F )

IF (ABS(RIUI.LF.O.OOOIIGO TO tO

DR=-2.5w_ (ALCG ( Y=UTAt.N/NU ) ÷3 • )

UTAUIH=tlTAUN-R/DR

GO TO 5

tO WSF=UTAUN
RETURN

END
FUNCTION AINTEG(Y,X,L,M)

C TIIIS IS A UTILIIY INTFGI_ATING R{'LITINE

DIMENSION Y( 231,X( 23)

S=O.O
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K:L+I 540.

IC Z=(YI KI-Y(K-I I )/(X(KI-X(K-I) ) 541.

C=(Z+(Y(K)-Y(K+I) )/(X(K+I)-X(KI ))/(X(K-11-X(K+I)) 542.

B:Z-C*IX(K-I)+X(K)) 563.

A=Y(K-I)-(B+CX, X(K-I l) _X(K-1) 544.

S=_+A'_(X(K)-X(K-1))+O.5=B*(X(K)_X'2-X(K-1)'ww_2|+C:m(XIK)W"w3-X(K-1)'kw'3 545.

l)/3.0 546.

IF(K.EQ.MI GO TO 20 547.

K=K* I 548.

GO TO i0 549.

20 AINTEG=S 550.

RETURN 55 1 •

END 552.

FUNCTION DERIV(Y,X,I) 553.

C THIS IS A UTILITY OIFFERENTIATI_!G ROUTINE 554.

DIMENSION Y( 23l,X( 23I 555.

Z--(Y( I l-Y(I-l) I/( X( I l-X( I-I| I 556.

C=( Z+{YI I l-Y( I+i I )I (X( I+l )-X( I ) ) )I(X( I- l|-X ( I+I ) I 557.

B:Z-C*(X(I-II+X(I )| 558.

DERIV:B+X(I )*2.0'wC 55g.

RETURN 560.

END 561.

SUBROUTINE SYNQP(H,THETA,QINF,NY,NU_YtQ,UTAU,DELTAI 562.

C THIS SUBROUTINE GENEPATES TEE STREAMWISE STARTING VELOCITY 563.

C PROFILE USING THE LAW OF THE WALL-WAKE 504.

REAL Q( 23),Y( 231,NU 565.

C USE CURVE FIT TO FIND COLES P) 566.

OEL S= H'WTHETA 567.

A=-2./( I .-i .O/HI 568.

B=0.4_DEL S_QINFINU 56q.

N=O 570.

PI=O.O 571.

i0 F=ALOG (8/ (i. +P I l ) ÷2.0+2.0'*'P I+A_ ( I.+I.6:_:P I +0.761 w_PI:('w'2)/ ( i. + Pl I 572.

N=N+I 573.

[F(N.GE.IOOI STOP 574.

IF(F.LE.O.OOOIIGO TO 20 575.

DF=-I.O/(I.÷PI )+2.+A:_(l.b+2.,wO.761w_Pl-(l.+l.6_'PI+O. 761:_:PI'WW'2|/ 576.

I(l.+PI) )/(I.+Pl ) 577.

P I=P I-O. 8,WF/OF 578.

GO TO I0 579.

20 CONTINUE 580.

IITAU:O .4'_( i .-I ./H ).w(i • +PI I_QINF/( 2. _x(I. ÷I. 6_'P I+ O. 761=PI _"a21 ) 581.

DELTA=O.4*OELS'WQINFI(II.+PI )_:UTAU) 582.

K=NY+2 583.

YN=NY 584.

DO 50 I=I,K 585.

Y(I )=DELTA'{' (0.25'_FLOAT(I)IYF!+O.Y5_W(FLOAT( I |IYN) _"w2) 586.

Q(1)=QINF *UTAUX' ( 2.5'WAL F)G (Y ( I l/ DELTA) -2 •5'c'PIx'( I .0 ÷C OS (3 • !415'wY ( I ) 587.

1/DELTA) })

50 CONTI NUE

DO 55 I=1,2

55 n.(K-2+I)=C(NY)

WRITE (6,80) (Y(1),Q(II,I=IIK)

80 FORMAT(2OX,'SYNTHE' IC VEI{!CITY PPOFILE'/23X,'

I/(20X,FIO.5,FIO.2 )l

WRITE(6,81) Pl

81 FORMAT (25X, 'CCL_S PI=',FIO.3)

RETUPN

END

FUNCTION DUF(I,DPDR,R,UVP,W,V,UP,U,OMEGA)

5P8.

58g.

590.

591.

592.

Y _' O' 593.

5q4.

595.

596.

597.

598.
59g.
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C THIS EVALUATESCU/DXFRCMX-MOMENTUM 600.
DIMENSICNUVP(23 ),W(23 ),V( 23),UP( 231,Ul 23) 601.

CUF: (-DPDR-UVP ( I ) ÷W{ I )_*2/P-V( I )*UP{ I )+ 2.*OMEGA*W() )+R*CMEGA**2 ) 602.

flU{ I ) 603.

RETURN 604.

END 605.

FUNCTION DWF(I,R,VWP,WtVtWPtU,OMEGA) 606.

C THIS EVALUATES CW/DX FRCM Z MCMENTLIM 607.

DIMENSI(]N VWP(Z3 },W(23 ),V(23 ),WP(23 ),U(23 ) 608.

DWF= (-U { I )*W{ I )/R-V( I )=WP{ I )-VWP( I )-2.*CMEGA*U( I ) )/U(I) 609.
RETURN 610.

END 611.
SUBROUTINE VCALC(NY,U,W,V,Y,R,DPOR,UVP,OMEGA) 612.

C CALCULATES THE NORMAL VELOCITY V EXCEPT FOR V(ll 613.

DIMENSION U( 23),W( 23),V( 23),Y( 231,UVP{ 23),XIG( _3) 614.

K=NY+2 615.

DO 50 I=I,N_ 616.

XIG( I )=0.0 617.

X IC( I )= {UVP ( I J+DPDR-(U( I )*m2+W( I )*m2)/R-2.*CMEGA*W( I )-R*nMEGAm*2) 618.

l/U() )*.2 619.

50 CONTINUE 620.

XIG(NY+I I=XIG(NY) 621.

DO I00 I=2,NY 622.

V(l l= U(I I*AINTEGIXIG,Y,I-I,II+V(I-I)_U(II/UII-I) 623.

I00 CONTINUE 624.

RETURN 625.

END 626.

FUNCTION DX F (NY,LJS, Y, UTAU,K L, BETA,Q, VISC) 627.

C CALCULATES DELTA [ 628.

DIMENSION US( 23),Y{ 23),Q( 23| 629.

UT=UTAUmSQRT(COS(BETA) ) 630.

A= { y( KL )* ( US( KL )- 2.5x_UT )-33.5"VI SC) /US{ NY) 631.

B=AINTEG(US, Y, KL, NY )/US (NY+2) 632.

DXF=Y(NY I- (A+B) 633.

RETURN 634.

FND 635.

FUNCTION THXF (NY, UU,Y,UTAU, KL,BETA, DELTAX,U S, Q, VI SC ) 636.

C CALCULATES THETAII 637.
DIMENSION UIJ( 23),Y( 23),Q{ 23) ,US( 23I 638.

A: ( (UT AU*2 • 5*Y {KL )m (0 .z+.Q (KL) **2/UT AU-2.0*Q IKL )+2. O*UTA U*2. 5)- 630.

1420.*UTAU*VI SC) /UU{ NY+Z) )*(COS( BETA) )**2 640.

R=AINTEG(UU,Y,KL, NY ) /IJS (NY+2) m*2 641.

THXF =Y(NY) -F)E LT AX- (A÷B) 642.

RE_-URN 6z,3.
END 6L'4"

SUBRUUT INE INT(XV,YV,X_Y,M_N,L) 645,

C _ IITILITY INTERPCLATICN ROUTINE 646.

DIMENSION X{ 23),Y( 23l 647.

K=N 64R.

IFIXV.GT.X(2) )GO TO 40 64q.

YV:Y(1) +{YI2)-Y(]I)*(XV-X(1))/{X(2)-X(I) ) 650.
GO TO 100 651.

40 IF(XV.GE.X(M-I} I GO TO 5g 652.

IF(K.NE.O) GO TD 55 653.

DO 50 I=[,M 654.

K=I-I 655.
IFIX(II.GT. XV) GO TO 55 656.

50 COhT INIIE 657.

55 CONTINUE 65_.

IF(K.LT.M-4) GU TC1 57 65q.
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K=K+I

GO TO 60

57 YV=O.O

DO 58 [=l,t

Z=( Y(K) -Y( K-t | ) / ( X(K) -X (K-I) )
C={ Z+ (Y ( K)-Y{K+I ) )/( X(K+I)-X(K) ) )/( X(K-I)-X (K+I) )

B= Z-C* ( X( K-1 )+X (K))

A=Y(K-t )-(B÷C_X(K-1 ) } _X(K-t )

K=K÷t

58 YV= ( A÷( B+C* XV ]_XV) IF LOAT{ L) +YV

GO TO 100

59 K=_
60 YV=Y(K-t) ÷(Y(K )-Y(K-I) )_( XV-X| K- I) )/(X(KI-X(K-1) )

100 CONTINUE

RETURN

END

FUNCTION RLORD(Z)

C CAICULATES eRADSHAW'S L

RLORD=. 4x'Z

IF(Z-.18|1103,110411104

110 z- IF( Z-t. I) 110511106_ 1106

1105 RLE!RD=.O95-.O55_(2._Z-I.)_2

GQ TO 1103

1106 RLORD=.OI6_EXP(-IO._(Z-I.I|)

1103 RETURN

END

FUNCTIC)N GORC(Z)

C CALCULATES BRADSHAW'S C.(NCRMALIZED)

IF(Z-.631II07. 1108,11C8

t107 Gr_RD=17.5_ZX(_I .86
GQ TO t toq

110l_ IF( Z-.R9)l t 10,I 111, llll

1110 GqP D=q3.9'_Z-49.75
GO TO 110q

11tl GFlRD=18.7_Z÷14.85

110Q RETURN
END

FUNCTION DUVF( [ _DqoS_UVyUVP_U_tJP,GUVtV_Y_TAUtTAUM)

C CALCULATES - DT/_UX/DX _ROM X SHEAR STRESS EQUATION
DIMENSION U( 23),UP( 23)tUV( 23)_UVP( 23)tV( 2311GUV( ?3),TAU( 23)

tyY( 23)
IF(I.FQ.t) GO TO 2

GUVP=DERIVIGUV.Y_ I|

GO TO 3
2 GUVP=(GUV(I÷I |-GUV(I) )/(Y( [÷t)-Y(I) )

3 DUVF=(-V( I )_UVP(I )+O.3=(-TAU(I) *Up( I )-Uv( I )_SQRT (TAU (I) )

II(RLORD(y(I}/F)qq5)*DO95)-SQRT(TAUM) _'GUVP)) IU{I )

RETURN

END

FUNCT ION DVmF (I _L)905_ VW_VWP _lJ_WP e GVW_Vt Yt TAUt TAUM )

C CALCULATES DTAUZ/DX FRQW Z SHEAR STRESS EQUATION

DIMENSION U( 23),NP( 23),VW( 2I),VWP( 23)tV( 23),GVW( 23)_TAU( 23|

trY( 2])

IF(I.EQ.I) GO TO 2

GVWP=DERIVIGV_Vt I)

GO T[3 3

2 GVWP=(GVW( I÷t )-GVW(I) |/ (Y (I ÷t)-Y( I ) |

3 DVWF=(-V( I )_VWP( I l+O. 3*(-TAU(I) _WP( I )-VW( I)*SQRT(TAqI( I | |

1/(PLORO(Y(1)/DgqS)*{3q95)-SQIqT(TAUM) _GVWP)) /U( I )

RETURN
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END
SUPPOUTINEW_XSH_ ([IY,UVtVW,TAU,TAUM)

CALCULATES MAX IMUN TALl M'O TALl F_,NH TAUX AHD TALJZ

DIt,'ENSICN UV(23) ,V_( 23),TAU( 231

TAIJM=O.O

00 IO I=I,NY

TAU( I I=SQRT(UVf I 1"'2÷V_4( I I*_'2 }

T AU_=_MAX 1 ( TAU_,T 5lJ( I I )

IO CO_ TINUE

kETURN

EN[;

SUBROUTINE C-FCALC (IIV, VW _Q INF _ K, Y _ D_q5 t GUV t GVWt TAUr_I

CALCIIL_TES G_TAUX ANP C*TAUZ

DIMENSICN UV( 23),VWI 23),Yl 231,GUVI 231,GVWI 231
Orl 130 I=I,K

GUV(| I=GORDIY( I I/[/oq5 )*(TAU_'I,_O. 5/QINF

GVWI I)=GUVI I)'_'VWIII

GUV( I)=GUVl I}'_UVI I)
130 CONTINUE

R FTURN

END

FUNCTT(IN UWAKE( Y,LJTAU_PI ,DQq5 ,NUI

CAtCULATES VELOCITY ACCORDING T( C('IES LAW OF WALL-WAKE
PEAL NU
YI=Y

IF( YI.GT.Dgq5 |Y]=P_Q5

I)WA KF:UTAU* [ 2.5'_AL[}G ( Y I'_I_TAI,/NU I _'5. "2.5 _'P I'_ [ 1 .-COS ( 3 • ]L 16*%' I/Dq95 }

Ill
RETURN

FND

SDAT/_

GaRDCW B-50.6 VaNELESS DIFFUS_r-P
.18 l.O1 40.5 1.5 .006218 1.77

] .58F 49.6 f), 16. I .0304 .425

-.00 _ .I 00012

_.4. 42.2 40.3 3_. z. 36.7 35. ?

2.7 31.9 31.2 30.8 30.7

-tT._ -t_.04 -IP.SI -t£.5 -15.4 -t_.23
-lO, -7.27 - 5.21 - _. q% -. 434

15C3010502

• t303 .3_ .53 .71 ,95 1.01
_STNO
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APPENDIX B

METHODS FOR ESTIMATING THE WALL SHEAR STRESS DIRECTION

As mentioned in chapter 2, it is generally more accurate to extrap-

olate the velocity direction to the wall rather than the shear stress

direction. Hence, most of the methods investigated are of the velocity

extrapolation type.

It is rather difficult to make a direct evaluation of the empirical

functions used to extrapolate the wall shear stress direction because

very few of the experimental velocity profiles which are available are

accurate in the region close to the wall. Hence, the wall conditions

are evaluated by such criteria as reliability, ease of application and

effect on overall predictions of the mean velocity field.

Method i

This method simply approximates the wall shear stress direction as

being the same as the velocity direction at the first mesh point. As

Figure B.I indicates, this can significantly underestimate the wall

shear stress angle. On Figure B.I, the solid dots represent the approx-

imate locations of the first three computational mesh points.

Method 2

In this method, Bw is obtained by linear extrapolation of the

velocity angle from the first two computed mesh points. In the data

shown in Figure B.I, this method appears to work quite well. In some

data sets, a curvature exists in the B versus y curve and it was

felt that Method 2 might in some cases cause errors. Hence, other meth-

ods were tried.
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Method 3

Method 3 is based on a suggestion of Nash (personal communication)

in which it is proposed to fit a cubic of the form

W = A + BU + CU 2 + DU 3 (B.I)

to the computed values of U and W at the wall and the first two mesh

points. The fourth condition required to evaluate the constants is:

dP

_2W - vsinYw _x

- 3 (B. 2)

8U2 rwC°S _w

This expression is derived from the momentum equations Equation 1.9 and

i.i0 when the limit as y approaches zero is taken. This expression

indicates that in any situation with a pressure gradient, if there is

any skewing, the polar plot of W versus U is curved next to the wall.

Cham (1968) also concluded this.

The wall shear stress direction is found by differentiating Equa-

tion B.I and evaluating it at U = 0.

(_)w = tanYw
all

Method 3 did not work well in fact in some cases no suitable cubic

could be found. This is because the requirement imposed by Equation

B.2 is too severe for a simple cubic to satisfy if the cubic also sat-

isfies the requirements at the first two mesh points. This method was

dropped from further consideration.

Method 4

In this method, which is what Nash actually suggested, the cubic is

fitted to the polar plot (W s vs Us) rather than to U and W directly.

This method is more difficult to apply but is not expected to function

significantly differently from Method 3.
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Method 5

Method 5 assumes that a parabola can be fitted to the tanget of the

velocity angle _ at the first two mesh points.

2
tanV = A + By + Cy (B.3)

Equation B.2 is also used to evaluate the constants. This method ap-

peared to have similar problems to Method 3. The difficulty with Meth-

ods 3, 4, and 5 all seem to be related to the fact that in real flows,

_2W/_U2 changes very rapidly near the wall, and this variation cannot be

represented by the simple functions tried here. This difficulty is

illustrated in Figure B.2.

Method 6

Method 6 is based on the two-dimensional method of Bradshaw. The

X component is obtained from:

dP

= tEl + 0.5 d-_Xwa ii

(B.4)

This expression is an approximation of the x momentum equation. The

factor 0.5 is used to compensate for the convective terms. The wall

shear stress magnitude is computed as discussed in Chapter 2. The di-

rection of the wall shear stress is thus computed from

cosy w = _Xwall/_Wall (B.5)

The results of this method were similar to those of Method 2, however in

some cases, at low momentum thickness Reynolds numbers, where the dis-

tance between the wall and the first mesh point is as great as 0.15995,

some oscillations in the computed wall shear stress direction appeared.

Method 2 was considered to be preferable.
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Method 7

This method is an attempt to improve on Method 6 by approximating

the convective terms directly. Using the continuity equation (Equation

1.8) and the momentum equations (Equations 1.9 and i.i0) the following

expressions can be obtained.

_U 2 OUV dP b_x

0x +T = - d-_ + _--ff- (B.6)

8UW 8_ <_ z

d-"_-- + c_y - by (B. 7)

Rearranging and integrating from the wall to the first mesh point, one

obtains

dP fY _U 2
_x - _x = UIVI + Yl _x + _ dy (B.8)

W O

Yl
_wu

T z - Tz = WIVI + f <)--_-dy (B.9)
W O

Thus T and T can be found if the definite integrals can be
X Z
W W

evaluated. However, V 1 is not known accurately (in fact, when this

method was actually tried, the approximation for V 1 was not as good

as is described in Chapter 2). Furthermore, the definite integrals

could only be evaluated by assuming a functional form for the velocity

profiles. This is in fact what Bradshaw did for Method 6 and it is not

felt that Method 7 would offer any obvious advantage over Method 6.

Method 7 is, however, more difficult to apply.

Method 8

This is the method which is actually described in Chapter 2. Meth-

od 8 is a slight variation of Method 2. If the _ versus y curve has

a curvature in the region of the first three mesh points, this curvature
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is continued in the curve which extrapolates the velocity direction to

the wall. In some cases this method should be a better approximation

than Method 2.
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APPENDIX C

ATTEMPTS TO COMPUTE ROTATING DISC FLOWS

In the present research program, an unsuccessful attempt was made

to predict the rotating disc flows of Cham. In his rotating disc experi-

ments, a simple circular disc was rotated about its axis in free air

(see Figure 1.2(c)). Since the llo slip boundary condition holds at the

surface of the disc, the fluid close to the disc is forced to rotate.

This effect in turn generates centrifugal forces within tile rotating

fluid which tend to drive the flow radially outward. In our attempt at

prediction, a coordinate system fixed to the surface of the disc was

used and thus Coriolis acceleration terms were included in the momentum

equations. The x direction was oriented in the radial direction, but

because U, which is a divisor in the momentum and shear stress equa-

tions in the form of Equation 3.2, is always zero in the free stream,

difficulties were encountered. Division by U is a consequence of the

explicit method used. It need not occur in an implicit forward differ-

encing method and Cooper (1971) successfully computed the rotating disc

flows of Cham using a modification implicit eddy viscosity method of

Cebeci and Smith (Kline et. al. ]969). To circumvent the problem, in

our work an artificial radial flow of U _ 0 was superimposed on the

free-stream and an attempt was made to establish the limit as this ra-

dial flow was reduced to zero. Unfortunately, when the imposed radial

flow became small, the number of x-steps became immense (on the or let

of 1000) and various numerical inaccuracies accumulated and destroyed

the predictions. It was then realized that this class of flows could

not be properly treated with our present numerical technique and further

efforts were abandoned for the time being.
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APPENDIXD

SUGGESTEDIMPROVEMENTSIN THECOMPUTERPROGRAM

Although the numerical method used in the present study works rea-

sonably well and is considered to be adequate for the situations consid-

ered, a number of desirable improvementsare now evident.

a. Difficulties arise from Equation 3.10, the function which distributes

the meshpoints in the y direction. The first problem concerns the

constant C which fixes the first meshpoint at a y+ of 30. As dis-

cussed in Chapter 4, at low Reynolds numbers, it was felt desirable to

keep the first point at this value of y+ and take the consequent lim-

itations in accuracy. At high Reynolds numbers, this restriction is not

needed. At momentumReynolds numbershigher than about 20,000, the first

meshpoint will be muchcloser to the wall than the first meshpoint is

to the second meshpoint. This is undesirable from the standpoint of

differentiating and interpolating on the computedprofiles. Furthermore,

it causes a small x-step (see Equation 3.12) which increases computer

time and at the same time increases errors due to roundoff, truncation

and interpolation. Thus it is recommendedthat the y+ at the first

meshpoint be all_ed to increase with Reynolds numbersuch that the

first meshpoint is about the samedistance from the wall as the second

meshpoint is from the first. It should be pointed out that Equation

2.36 will have to be reworked so that V1 is a function of y+.

The second problem concerns the two alternate y-grids used. Due

to the fact that the value of y at the first meshpoint changes very

little at: alternate x-stations, it turns out that the grids computed

by Equation 3.10 with two different values of _ are often not very
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diffeL-ent and the, ._dw[ntage of interpolation is lost. This can increase,

the chance _f instabilities. On the other hand, Equation 3.10 will

always produce alternate grids which are essentially the samein the

outer part of the flow. This is desirable since interpolation has been

found unnecessary in this region and interpolation errors can effect the

location of 6995 and result in surprisingly large effects on the cal-

culations. (This _a_;Jiscovered wh_nan alt_rnate grid was used which

was e._actly interspacc,d between the pL'evious grid.) Thus, it is recom-

mendedthat a functioL_ be developed which will distribute the points on

two altern;_te grids and will produc_ i considerable chang_ in distribu-

tion of points in the inner part of the turbt,-l_nt region and very littl_

in the outer part regardless of the location of the fir_t meshpoint.

b. As mentioned above, the value of 6995 is very sensitive to inter-

polation errors in the outer part of the flow. In the part of the flow

AU/ _v is small and consequently _y/_U is very larg_ _.
around y = 6995,

This sensitivity of 6995 produces a rather large chan_e in the calcula-

tions when a small number of mesh points (i0 for example) are used with

the Ns_h _!Lld Bradsl1,_w methods. In the Nash and Bradshaw mct_lods 6995

is a parameter in the calculation of the shear stress in the outer part

of the flow. It is recommended that the dissipation length and diffusiop

functions b_; L1ormalized on an integral property of the bou_idary layer

(like _iI or 61) to avoid this problem.
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